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In the study carried out in 8 villages and 27 cotton parcels in the Artuklu and Kızıltepe Districts of Mardin Province, data logger devices 
were installed on the lands. These devices are programmed to record soil temperature and humidity values every 6 hours. The data 
collected from the data loggers were compared with the Landsat-8 and Sentinel-1 images used by pre-processing in the Google Earth 
Engine (GEE) cloud environment, and the relationship between them was investigated by analyzing them. A significant and high 
correlation was found between soil moisture (TN) and Sentinel-1 values, VV (R2 = 0.67), VV-VH (R2 =0.65), and Landsat-8 SMI (R2 = 
0.85) values. A significant and high correlation was found between soil temperature (TS) and the Sentinel-1 values of VV (R2 = 0.57), 
VV-VH (R2 =0.54), and Landsat-8 SMI (R2 = 0.75). In conclusion, it is recommended that the Sentinel-1 VV and VV-VH bands and the 
Landsat-8 SMI index could be used in soil moisture (TN) and soil temperature (TS) estimation studies, while the Landsat-8 LST band is 
recommended to be used in larger-scale land areas and regions.  
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INTRODUCTION: Cotton is a raw material for many industrial 
sectors, such as textiles, oil, feed, chemistry, etc. While the demand 
for cotton products increases with the rapid population growth, it is 
observed that cotton production has not increased sufficiently, 
trade has decreased, and stocking has increased due to reasons such 
as the COVID-19 crisis, climate change, excessive and irregular 
rainfall, as well as the regional drought disaster that has started to 
be experienced more frequently in recent years. According to 2022 
production season data, the cotton cultivation area in the world is 
33.18 million ha, the production amount is 25.73 million tons, 
consumption is 25.62 million tons, and the stock amount is 20.45 
million tons. In Turkey, the cotton cultivation area is 480000 ha, the 
production is 833.000 tons, the consumption is 1.61 million tons, 
and the stock is 1.54 million tons. The cotton plant has a vegetation 
period of 170-185 days, and the annual water requirement is 
between 492 and 1153 mm, with an average of 700-800 mm in our 
country. In regions where there is little rainfall between April and 
October, which is the growing season of cotton, especially in the 
Mediterranean and south-eastern Anatolia, the water deficit is tried 
to be filled with irrigation. This can be a problem in terms of 
consumption of natural resources, the environment, and soil, as well 
as increasing the need for energy and labour, which comes to the 
fore in terms of production costs. Therefore, an effective irrigation 
method with irrigation at the right time and amount is very 
important. In addition to various classical measurement and 
evaluation methods in these subjects, remote sensing technology, as 
a relatively new technology, also emerges. Remote sensing is the 
science and art of measuring and determining the properties of an 
object by interpreting the electromagnetic rays reflected or emitted 
from the object without any physical contact with the earth or 
connected sources in terms of quality and quantity. Remote sensing 
is classified as active or passive sensing according to the type of 
sensor. The perception of the reflection of the rays emitted by the 
earth and objects themselves or from the sun is called passive, and 
the perception of the reflected rays by the satellite itself by sending 
rays to the earth is called active systems. Examples of passive 
systems are optical, thermal, and microwave sensors; active 
systems are LIDAR (light detection and ranging) and RADAR (radio 
detection and ranging) systems. Remote sensing is used in many 
areas such as vegetation cover and distribution, land use, plant 
growth, yield estimation, classification, and soil and plant 
characteristics in agriculture (Sunar et al., 2016). For some uses, 
plant, land, and product evaluation information is needed. For this 
purpose, various tools and sensors related to plant development and 
plant and soil structure are used. With the use of in-field sensors, 
soil and plant conditions are observed, and irrigation suggestions 
are made (Acar et al., 2020; El Ghandour et al., 2019; Koçak, 2002; 
Mthandi et al., 2013; Raper, 2014), The effect of meteorological 
events is also observed (Aktaş & Üstündağ, 2020). The two 
situations were combined and the relationship between them was 
tried to be determined (Bulut et al., 2019). Soil moisture sensing 
performance was examined with satellite images (Serrano, 2010), 
global-scale evapotranspiration was determined (Zheng et al., 
2017), and crop water requirements were tried to be estimated 
(Akdim et al., 2014).  

OBJECTIVE: This study was carried out with the aim of recording 
the soil moisture and temperature values with the sensors in the 
cotton plant production area to the data logger device, to determine 
the relationships between these values and the SAR and optical 
satellite images, and to investigate the usability of the satellite 
images in estimating the humidity and temperature values.  
MATERIAL AND METHODS: Trial area: The research was carried 
out in 8 villages and 27 different cotton planted plots in Mardin 
Province’s Artuklu and Kızıltepe districts. Information about the 
parcels is given in figure 1 and table 1. 

 
Figure 1: Information about the parcels.  

NO Village (Parcels), X ;    Y Koord. NO Village (Parcels), X ;       Y Koord. 

S01 ALAKUŞ (133/1)  40,856; 37,139 S15 ALTINTOPRAK (113/1) 40,611; 7,100 

S02 ALAKUŞ (133/1) 
 

40,860; 37,138 
 

S16 ALTINTOPRAK (117/1) 40,596; 37,1 

S03 ALAKUŞ (116/6) 
 

40,878; 37,142 
 

S17 TANRIVERDİ (135/1) 40,583; 7,094 

S04 ALAKUŞ (130/1) 
 

40,866; 37,136 
 

S18 TANRIVERDİ (134/1) 40,578; 37,097 

S05 ALAKUŞ (130/2) 
 

40,865; 37,134 
 

S19 ALTINTOPRAK (122/2) 40,597; 37,109 

S06 KÜÇÜKKÖY (111/3) 
 

40,853; 37,129 
 

S20 TANRIVERDİ (113/1) 40,591; 37,067 

S07 ALAKUŞ (116/3) 
 

40,877; 37,157 
 

S21 TANRIVERDİ (110/3) 40,590; 37,075 

S08 ÇIPLAKTEPE (108/11) 40,843; 37,52 S22 AKYÜZ (109/2) 40,531; 37,108 
S09 ÇIPLAKTEPE (108/4) 

 
40,846;  37,157 
 

S23 AKYÜZ (108/6) 40,538; 37,113 

S10 DİBEKTAŞ 116/13) 
 

40,836;  37,128 
 

S24 AKYÜZ (122/1) 40,565; 37,112 

S11 DİBEKTAŞ (116/12) 
 

40,834; 37,128 
 

S25 AKYÜZ (101/4) 40,549; 37,114 

S12 ALTINTOPRAK (103/1) 
 

40,598; 37,119 
 

S26 GÖZLÜCE (107/2) 40,531; 37,072 

S13 ALTINTOPRAK (103/1) 
 

40,593; 37,124 
 

S27 GÖZLÜCE (107/3) 40,528; 37,073 

S14 ALTINTOPRAK (102/1) 
 

40,600; 37,114 
 

   

Table 1: Information and coordinates of the parcels.  
The cotton plant was planted in 2021 in the study areas, and in-farm 
cultural processes, maintenance feeding, and irrigation processes 
were carried out under farmer conditions, and no additional 
applications were made. During the June-September period in 
which the study was conducted, no precipitation occurred in the 
region. Changes in temperature and humidity values during the 
vegetation period are given in figure 2. 
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Figure 2: Change in temperature and humidity values during the 
vegetation period.  
Data Logger: Within the scope of the research, 27 data logger 
devices were used, and the data read by the ambient humidity and 
temperature sensors and the soil moisture and temperature sensors 
were obtained. The devices are programmed with the Arduino 
software program and are programmed to record one value every 
six hours. The data logger is given in figure 3 a-d. 

 
Figure 3 : Datalogger device internal parts, c:, datalogger device as 
mounted, d: field use of the datalogger device   
Soil Moisture (TN) and temperature (TS) sensor features: 
Temperature was measured with ±0.1 °C accuracy between 0 and 
+300 °C, and humidity was measured between 0 and 100% with 
±5% humidity accuracy. The devices were installed in the field in the 
2nd week of June, and the data were collected in the first week of 
September. During this period, the devices recorded the soil 
moisture (TN) and soil temperature (TS) values in the field. 
Sentinel-1: Within the framework of the Copernicus Program 
carried out by the European Space Agency (ESA), the first (Sentinel-
1 A) was launched in 2014, and the second (Sentinel-1 B) was 
launched in 2016. It has a C-band synthetic aperture radar (SAR) 
sensor with spatial resolution up to 5*20 meters, VV, VH dual 
polarization as vertical (V) and horizontal (H) (Anonymous, 2023a). 
Sentinel-1 interferometry ground range detected (GRD) level 
images were used in the study (figure 4). 

 
Figure 4: Radar satellite polarizations. 
Sentinel-1 Refined Lee, Gamma Map, and Perona Malik (Cresson et 
al., 2018; Mansourpour et al., 2006; Medasani & Reddy, 2017) filters 
were used for speckle filtering in GRD images. Refined Lee filter 
takes the average of the determined area while preserving the 
edges, providing better preservation of image details (Medasani & 
Reddy, 2017). Gamma Map filter assumes that the scene reflectivity 
is a Gaussian distribution while preserving the high-frequency 
features (Mansourpour et al., 2006). The Perona Malik filter is used 
to soften images while preserving the contours of objects (Cresson 
et al., 2018). These filters were also used in the GEE environment, 
and the band values obtained were processed into the MS Office 
Excel program. 
Landsat-8: It was launched by the United States Geological Society 
(USGS) in 2013 and includes a 15-30 m resolution Operational 
Terrain Imager (OLI) and a 100 m resolution Thermal Infrared 
Sensor (TIRS). Landsat-8 land surface reflection (SR) images were 
used in the study. 
Normalized difference crop index (NDVI): It was used to evaluate 
changes in plant growth and plant health. The ratio between the red 
and near infrared bands (Rouse et al., 1973), determined by the 
equation 1. 
NDVI = (NIR-RED)/(NIR+RED) 

Black surface temperature (LST): The top of Atmosphere 
Reflectance (TOA) algorithm converts Landsat-8 thermal band 
(Band 10) pixel digital numbers to luminance temperature (Cohen 
et al., 2021). Using this transformed band, the surface temperature 
of the land is calculated in figure 5 (Avdan & Jovanovska, 2016). 

 
Figure 5: Work flow chart for LST purchase. 
Soil moisture index (SMI): It was developed for soil moisture 
estimation using NDVI and LST values for Landsat series satellites. 
SMI is determined by the equation 2 (Zeng et al., 2004). 
SMI = (LST_max–LST)/(LST_max-LST_min) 
Google earth engine (GEE): Introduced by Google in 2010. It is a 
cloud-based geospatial computing platform. Data storage, analysis, 
and production of outputs and maps in various formats, as well as 
being able to operate on a regional, national, and global scale, 
provide great advantages for users. Sentinel-1 and Landsat-8 
satellite images were obtained over the GEE environment. In this 
platform, trajectory correction, corner noise removal, thermal noise 
removal, radiometric calibration, and terrain correction operations 
have been performed as part of the pre-processing for Sentinel-1 
GRD images, and geometric, radiometric, and atmospheric 
correction operations using the Land Surface Reflectance Code 
(LaSRC) algorithm for Landsat-8 images have also been performed. 
Band pixel values obtained by determining the time intervals were 
processed into the MS Office Excel program and subjected to 
variance analysis in the JMP 5.0.1 (Copyright © 1989–2002 SAS 
Institute Inc.) statistical program with DL values (figure 6). 

 
Figure 6: Workflow protocol 
RESULTS AND DISCUSSIONS:  First, correlation analysis was done 
on TN and TS data from data loggers and the Sentinel-1 and Landsat-
8 satellites. Then, regression analysis was done on the data that was 
statistically significant. The regression analysis results of the TN 
data obtained are given in table 1, and the regression and reverse 
regression analysis results of the TS data are given in table 2. 

Band/İndex R2 RMSE Regression Equation Regression Equation 

VV 0.67** 0.03 Y= 0,00274*TN + 0,06823 Y= 246.09*VV-4.54 

VH 0.06** 0.01 Y =0.00013*TN + 0.02565 Y = 406.18*VH + 25.09  

VV-VH 0.65** 0.03 Y = 0,00260*TN + 0,04258 Y = 249.47*VV-VH + 2.53 

LEE_VH 0.08** 1.41 Y =0.02356*TN-16.36457 Y = 3.41*LEE_VH + 90.31 

LEE_VV 0.61** 0.86 Y = 0.06108*TN-10.28835 Y = 10.02*LEE_VV + 117.62 

GAMMA_VH 0.11** 1.24 Y = 0.02314*TN-16.26267  
Y = 4.23*GAMMA_VH + 
102.68 

GAMMA_VV 0.56** 0.82 Y = 0.05167*TN-9.80801 
Y = 10.75*GAMMA_VV + 
122.14 

MALIK_VH 0.08** 1.51 Y = 0.02439*TN-16.431 Y = 3.08*MALIK_VH + 85.36 

MALIK_VV 0.63** 0.87 Y = 0.06409*TN-10.41644 Y = 9.79*MALIK_VV + 115.94 

SMI 0.85** 0.10 Y = 0.01*TN - 0.02 Y = 77.76*SMI + 9.87 

LST 0.34** 4.18 Y =-0.13210*TN+ 44.39125  Y = 2.60*LST- 151.97 

Table 2: Soil Moisture (TN) Data and Sentinel-1 and Landsat-8 
band/indices regression/inverse regression analysis results. 
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TN: Soil Moisture, R2: Regression Coefficient, RMSE: Root Means 
 Squared Error, **:0.01 significant 
It is seen that there is a linear (y = 0.00274 TN + 0.06823) (R2=0.67) 
relationship between soil moisture (TN) and Sentinel-1 VV band 
values (table 1 and figure 7). The existence of a linear and significant 
(1%) relationship between soil moisture and Sentinel-1 VV band 
values reveals that it can be used to determine instantaneous or 
dynamic soil moisture values and Sentinel-1 VV band values. It is 
seen that there is a linear (y = 246.09*VV + -4.54) (R2=0.67) 
relationship between Sentinel-1 VV band values and soil moisture 
(TN) (table 2 and figure 7). The existence of a linear and significant 
(1%) relationship between Sentinel-1 VV band values and soil 
moisture reveals that Sentinel-1 VV band values can be used to 
determine soil moisture values. It is seen that there is a linear (y = 
0.00260 TN+0.04258) (R2=0.65) relationship between soil moisture 
(TN) and Sentinel-1 VV-VH band values (table 1 and figure 8). 

 
Figure 7: Change between VV and Soil Moisture (TN). 

 
Figure 8: Change between VV-VH and Soil Moisture (TN).  
The existence of a linear and significant (1%) relationship between 
soil moisture and Sentinel-1 VV-VH band values reveals that it can 
be used to determine instantaneous or dynamic soil moisture values 
and Sentinel-1 VV-VH band values. It is seen that there is a linear (y 
= 249.47*VV-VH + 2.53) (R2=0.65) relationship between Sentinel-1 
VV-VH band values and soil moisture (TN) (table 2 and figure 8). The 
existence of a linear and significant (1%) relationship between 
Sentinel-1 VV-VH band values and soil moisture reveals that 
Sentinel-1 VV-VH band values can be used to determine soil 
moisture values. Our findings, obtained between VV, VV-VH bands, 
and TN, are based on study to predict annual soil water content in 
vegetated lands with the help of SAR images and machine learning 
techniques; soil moisture satellite data are promising to increase the 
reliability of flood measures (Ahlmer et al., 2018). The Sentinel-1 VV 
band showed a better relationship than the VH band in estimating 
soil moisture with the help of Sentinel-1 microwave and Landsat 
7/8 thermal data (Amazirh et al., 2019); evaluating the use of active 
and passive data separately and together in obtaining soil moisture 
information, (Amer et al., 2011); (Bauer-Marschallinger et al., 2018), 
reporting that Sentinel-1 data are highly productive in plains, 
forests, and agricultural areas.  Development a remote sensing 
product combining active and passive microwave sensors to 
determine soil moisture deficits (Hirschi et al., 2014). Hoskera et al., 
(2020) produced various linear and generalized models by using 
Sentinel-1 images for volumetric soil moisture estimation; 
Khabbazan et al. (2019), who stated that Sentinel-1 data can provide 
reliable information in cloudy conditions in their studies for product 
development monitoring, Navarro et al. (2016), stated that Sentinel-
1A data can be used with complementary and optical images in their 
studies for land cover monitoring in different agricultural 
conditions; Pablos et al., (2016); Schmugge et al., (1976), reported 
that microwave radiometers mounted on truck, aircraft, and 
spacecraft platforms are sensitive to soil moisture changes for 
different conditions in light or medium vegetated areas; In the study 
conducted for soil moisture estimation with ALOS-2 and Sentinel-1 
data, Şekertekin, (2018), who stated that L-band was more effective 
than C-band, supports the findings. 
The regression results obtained from the Refined Lee, Gamma Map, 
and Perona Malik filter results applied to the VV/VH band were not 

explained as they were lower than the regression results obtained 
from the VV/VH band values. 

 
Figure 9: Change between SMI and Soil Moisture (TN). 
It is seen that there is a linear (y = 0.0109*TN- 0.02) (R2=0.85) 
relationship between soil moisture (TN) and the Landsat-8 SMI 
index (table 1 and figure 9). The existence of a linear and significant 
(1%) relationship between the soil moisture and the SMI value 
reveals that it can be used to determine the instantaneous/dynamic 
soil moisture value and the SMI value. It is seen that there is a linear 
(y = 77.76*SMI + 9.87) (R2=0.85) relationship between the Landsat-
8 SMI index and soil moisture (TN) (table 1 and figure 9). The 
existence of a linear and significant (1%) relationship between the 
Landsat-8 SMI index and soil moisture reveals that it can be used to 
determine the soil moisture value by determining the Landsat-8 SMI 
index value. Our research shows that LST data has a lot of potential 
for estimating soil moisture in places with little or no vegetation. 
Masoud et al. (2019); Özelkan et al. (2014) stated that Landsat-7 
thermal images are suitable to explain the relationship between 
monthly average land surface temperature and air temperature, 
total precipitation, and relative humidity; Qui, (2006); Saha et al. 
(2018) stated that SMI derived from Landsat images can be used 
efficiently in the assessment of flood disasters and agricultural 
droughts; Stating that thermal data can be used in surface soil 
moisture estimation studies in their study to determine the 
relationship between remote sensing data and soil moisture, Syed & 
Javed, (2015) stated that this supports the findings of Zhang & Zhou, 
(2016) reported that combinations of optical and thermal images 
provide useful information for soil moisture estimation. 

Band/İndex 
R2 RMSE Regression Equation Regression Equation 

VV 0.57** 0.03 Y = -0,00834 TS + 0,46170 Y = 67.82*VV- 46.44 

VH 0.06** 0.01 Y =-0.00046*TS + 0.04669  Y = 127.06*VH - 38.74 

VV-VH 0.54** 0.04 Y =-0.00788*TS + 0.41501 Y =-68.27*VV-VH + 44.42 

LEE_VH 0.09** 1.40 Y =- 0.08260*TS-12.60213  Y = 1.08*LEE_VH- 18.12 

LEE_VV 0.54** 0.93 Y =- 0.19136*TS-1.32834  Y = 2.84*LEE_VV- 12.16 

GAMMA_VH 0.11** 1.23 Y =- 0.08009*TS-12.60348  
Y = 1.32*GAMMA_VH- 
14.46 

GAMMA_VV 0.49** 0.87 Y =- 0.16191*TS-2.22716  
Y = 3.06*GAMMA_VV- 
10.87 

MALIK_VH 0.09** 1.51 Y =- 0.08559*TS-12.53337  Y = 0.98*MALIK_VH- 19.67 

MALIK_VV 0.56** 0.94 Y =- 0.20116*TS-1.001942  Y = 2.78*MALIK_VV- 12.60 

SMI 0.75** 0.13 Y = -0.04*TS + 1.74 Y = 19.92*SMI - 42.38 

LST 0.30** 4.33 Y = 0.44906*TS + 23.27058  Y = 0.66*LST + 6.15 

Table 3: Soil Temperature (TS) Data and Sentinel-1 and Landsat-8 
band/indices regression/ reverse regression analysis results 
TS: Soil Temperature, R2: Regression Coefficient, RMSE: Root Square 
Mean Error, Significant at the **:0.01 level. 
It is seen that there is a linear (y = -0.00834*TS + 0.46170) (R2=0.57) 
relationship between soil temperature (TS) and Sentinel-1 VV band 
values (table 3 and figure 10). 

 
Figure 10: Change between VV and Soil Temperature (TS). 
The existence of a linear and significant (1%) relationship between 
soil temperature and Sentinel-1 VV band values reveals that it can 
be used to determine instantaneous/dynamic soil temperature 
values and Sentinel-1 VV band values. It is seen that there is a linear 
(y = -67.82*VV + 46.44) (R2=0.57) relationship between Sentinel-1 
VV band values and soil temperature (TS) (table 2 and figure 10). 
The existence of a linear and significant (1%) relationship between 
Sentinel-1 VV band values and soil temperature reveals that 
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Sentinel-1 VV band values can be used to determine soil 
temperature values. 
It is seen that there is a linear (y = -0.00788*TS + 0.41501) (R2=0.54) 
relationship between soil temperature (TS) and Sentinel-1 VV-VH 
band values (table 2 and figure 11). 

 
Figure 11. Change between VV-VH and soil temperature (TS). 
The existence of a linear and significant (1%) relationship between 
the soil temperature and Sentinel-1 VV-VH band values reveals that 
it can be used to determine the instantaneous or dynamic soil 
temperature value and to determine the Sentinel-1 VV-VH band 
values. It is seen that there is a linear (y = -68.27*VV-VH + 44.42) 
(R2=0.54) relationship between Sentinel-1 VV-VH band values and 
soil temperature (TS) (Table 2 and Figure 11). The existence of a 
linear and significant (1%) relationship between Sentinel-1 VV-VH 
band values and soil temperature reveals that Sentinel-1 VV-VH 
band values can be used to determine soil temperature values. 
Our analysis findings obtained between the VV band, the VV-VH 
band, and the TS support the findings of (Cohen et al. (2021); Fayad 
et al. (2020) and Pablos et al. (2016). Stating that Sentinel-1 data 
was used to improve medium resolution MODIS land surface 
temperature data, Amazirh et al. (2019) and Rodionova (2017) 
reported that there is a high correlation between Sentinel-1 radar 
images and soil temperature. Mattia et al., (2017) developed a soil 
moisture estimation algorithm using Sentinel-1 images. The 
regression results obtained by applying the Refined Lee, Gamma 
Map, and Perona Malik filters to the VV/VH band are not explained 
because they are lower than the regression results obtained from 
the VV/VH band values. 
It is seen that there is a linear (y = -0.04*TS + 1.74) (R2=0.75) 
relationship between soil temperature (TS) and the Landsat-8 SMI 
index (table 2 and figure 12). 

 
Figure 12. Change between SMI and soil temperature (TS) 
The existence of a linear and significant (1%) relationship between 
the soil temperature and the SMI value reveals that it can be used to 
determine the instantaneous/dynamic soil temperature value and 
the SMI value. It is seen that there is a linear (y = 19.92*SMI - 42.38) 
(R2=0.84) relationship between the Landsat-8 SMI index and soil 
temperature (TS) (table 2 and figure 12). The existence of a linear 
and significant (1%) relationship between the Landsat-8 SMI index 
and the soil temperature reveals that it can be used to determine the 
soil temperature value by determining the Landsat-8 SMI index 
value. Our findings show that Sentinel-1 VV band showed a better 
correlation than VH band in estimating soil moisture with the help 
of Sentinel-1 microwave and Landsat7/8 thermal data, Amazirh et 
al. (2018); Masoud et al. (2019); Özelkan et al. (2014) stated that 
Landsat-7 thermal images are suitable to explain the relationship 
between monthly average land surface temperature and air 
temperature, total precipitation, and relative humidity; (Qui, 2006) 
It supports the findings of Saha et al. (2018) stated that SMI derived 
from Landsat images can be used efficiently in the assessment of 
flood disasters and agricultural drought 
CONCLUSIONS: It was observed that only the irrigation status 
affected the soil moisture values. There was no precipitation 
throughout the season, and air humidity did not affect soil moisture. 
Soil moisture values changed according to the irrigation situation in 
the field, started to rise with the start of irrigation, reached their 
maximum values, followed a stagnant course after the end of 
irrigation, and then started to decrease. The values for soil moisture, 
Sentinel-1 VV band, and Landsat-8 SMI index were found to have a 
strong and significant correlation. Soil temperature values were 
affected by air temperature at the beginning of the production 

season, when the plant mass was low, but the main factor was 
irrigation. It was observed that it was negatively affected by the 
irrigation situation; the temperature decreased from the beginning 
of the irrigation, the temperature values did not change much as the 
irrigation continued, and the soil temperature gradually increased 
after the irrigation was finished. A significant and high correlation 
was found between soil temperature values and Sentinel-1 VV band 
values, and a significant but low correlation was found between 
Landsat-8 LST values. It is thought that the reasons for the low 
correlation with the LST band may be due to soil covering due to the 
plant development period and the low (100 m) LST band resolution. 
Due to the low resolution, it is recommended to use this band in 
larger scale areas (village-district-region). According to the results 
of the regression analysis between soil moisture/temperature data 
and Sentinel-1 and Landsat-8 values; it is recommended that the 
Sentinel-1 VV band and Landsat-8 SMI index can be used in soil 
moisture estimation studies, the Sentinel-1 VV band and Landsat 
SMI should be used in soil temperature estimation studies, and the 
Landsat-8 LST band should be used in larger scale areas and regions. 
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