

as an operative ameliorative approach for salt exaggerated soils. 50% gypsum+50% sulphuric acid also illustrated highest produce of

3246.30 kg ha⁻¹ seed cotton showing an increase of 81% more yield over control. **Keywords:** Salinity control, combinations, sulphuric acid, gypsum soil pH, electrical conductivity.

INTRODUCTION: Cotton (Gossypium hirsutum L.) playing a crucial role as the main crop for fiber and being the second-largest producer of vegetable oil worldwide. Approximately 26% of Pakistani farmers cultivate cotton across 1937 thousand hectares, yielding a production of 8.3 million bales (Mehran, 2023). Saline soils are increasing at unprecedented rate all over the globe. Approximately, 7% of the world's land is saline in nature. It is estimated that almost 800 M hectares of the land is salt affected (FAO, 2008), including 20% of the irrigated land, refraining about 2 M ha of area from production every year (Munns and Tester 2008). These types of soils are abundant in arid and semi-arid regions facing water scarcity. Saline sodic soils need efficient, inexpensive management with less degradation of the soil environment. This goal can be got if a divalent cation i.e. calcium is applied which will sorb onto the exchange sites while desorbing monovalent Na⁺ into the soil solution. The desorbed sodium ions will be drained off the soil or leached down from the root zone through excess irrigation. However, in most of the cases saline sodic soils have Ca in calcite i.e. CaCO₃ form at different depths that is extremely low soluble and have very less contribution in soil amelioration. One of the most established technologies of saline sodic soils amelioration is the use of chemical amendments. Some of these amendments directly supply calcium to soil whereas others benefit in dissolving CaCO₃ (Qadir and Oster, 2002). Though, this technology is costly and cannot be afforded by the subsistence farmers in developing countries. This amendment is most costly on account of more utilization by industries and less funding for chemicals procurement (Qadir and Oster, 2002). To understand and improve the salt effected soils gypsum was mostly applied previously on account of its low cost, easy accessibility and application in comparison to other chemicals. However, Sulphur is also reported as a well-known strategy for salt amelioration. Presently Sulphur is mostly applied in the form of sulphuric acid which reacts with the native calcium carbonate and form CaSO₄.2H₂O (Abd El Hady and Shaaban 2010). This Ca perhaps replaces adsorbed Na (Abdelhamid et al., 2013). Sulphur application enhanced the tolerance level against salinity. Similarly, favorable soil settings by dropping influence of salinity have been described in Zea mays (Manesh et al., 2013), Brassica napus (Al-Solimani et al., 2010) and Triticum astivum L. (Ali et al., 2012).

OBJECTIVE: The current study was designed to find out optimum level of gypsum and sulphuric acid as an ameliorant for improved seed cotton yield of cotton in salt effected areas.

MATERIAL AND METHODS: The trial was conducted at Cotton Research Station Dera Ismail Khan (D.I.Khan) ($31^{\circ}49'$ N latitude & 70 °55' E longitude). Preliminary site selection was carried out on already available information. Soil samples of the selected soil were obtained and assessed for pH, EC and ESP cluing its range from 8.39 to 8.54, 13.04 to 14.04 and 34.25 to 37.91 respectively. Thus, the experimental site exhibited sodic characters having ESP > 15. The ESP was calculated as suggested by Richards, 1954; ESP = $\frac{\text{Exchangeable Na}\left(\frac{\text{me}}{100}\text{g of soil}\right)}{\text{Cation Exchange Capacity}\left(\frac{\text{me}}{100}\text{g of soil}\right)} \times 100$

Soil sampling and sample analysis: Prior to soil amendments, samples were obtained at soil depth of 30 cm and assessed for pH, electrical conductivity, cations (Na, K, Ca and Mg) and CEC so as to determine the exchangeable sodium percentage to get know how of the initial important soil chemical makeup (Richards, 1954). The amount of gypsum needed for each experimental unit was intended. Sulphuric acid was enhanced by substitution of sodium relative to gypsum (FAO, 1988). Chemical alteration treatments were arranged in laboratory. The experiment was comprised of the following 6 treatments, T₁. control; T₂. gypsum @100% of soil gypsum requirements (SGR); T₃. sulphuric acid @ 25% + 75% gypsum; T₄. sulphuric acid @ 75% + 25% gypsum; T₅. sulphuric acid 50% + 50% gypsum; T₆. sulphuric acid @ 100 of SGR. To investigate the treatment effect, these were smeared 30 days prior to planting at soil depth of 30 cm and attempted to leach down by applying the canal water for fifteen days. In control plot no alteration was subjected.

Sulphuric acid and gypsum application and crop tested: Gypsum was disseminated and combined with soil by ploughing whereas H₂SO₄ was applied after mixing with irrigation water. Three recurrent leaching and pounding operations were performed. After leach down process, cotton was sown in randomized complete block design (RCBD) with 3 repetitions. Cotton crops were sown on 1st May and fertilized 150:90:60 of N:P:K. Urea, SSP and SOP fertilizers as source of fertilizer. Whole volume of phosphorus and potassium and 1/2 of nitrogen was smeared at planting time. All recommended cultural practices were followed.

Data recording and statistical analysis: Data were recorded from 5 randomly selected plants in each treatment for plant height (cm), No. of bolls plant⁻¹ and weight of boll (g). Seed cotton yield (kg ha⁻¹) was recorded from the two pickings performed after 140 and 160 days of sowing of each plot and then converted into yield hectare⁻¹. Besides these plant attributes, the soil samples from each treatment was also collected after crop harvest and analysed again for various physico-chemical attributes like pH, ECe and ESP. Recorded data was statistically analysed by applying ANOVA suitable for randomized complete block design as per the recommendations of Steel *et al.* (1997). Means depicting significant differences were separated by applying the LSD test at 5% probability level.

RESULTS: Seed cotton yield (kg ha⁻¹) and related attributes: Yield as influenced by soil amendments of sulphuric acid and gypsum in comparison to control is offered in table 2. Statistical analysis exposed that various soil amendments remarkable influenced the seed cotton yield (table 1). It was perceived that in non-amended treatment, seed cotton yield was 1782 kg ha⁻¹ whereas it was maximum (3246.30 kg ha⁻¹) where 50% sulphuric acid +50% gypsum was utilized, reflecting a significant increase of 81% in comparison to control. There also observed 16% increase in

Online Available at: https://www.sciplatform.com/index.php/ijcrt/article/view/1451

25% sulphuric acid + 75% gypsum and 37% increase in 75% sulphuric acid + 25% gypsum application as compared to control. This increased seed cotton yield was on account of increased plant height, bolls per plant and boll weight along with favourable growth environment as compared to control and other treatments explored in this experiment. Treatment of 50% sulphuric acid + 50% gypsum produced maximum seed cotton yield which was 20% more than 100% sulphuric acid alone. The application of 50% sulphuric acid + 50% gypsum might increase the electrical conductivity of soil on account of discharge of sodium ions from exchange complex of the soil. Produce for the amended soil was remarkably excellent than untreated (control). This might be because of sulphuric acid and gypsum improving soil conditions and favoring plant growth which resulted in the better production under saline sodic soil conditions. Bolls plant⁻¹ is main independent yield contributing trait. Statistical analysis depicted significant differences for bolls plant⁻¹ in different treatments (table 1). Soil amended with 50% sulphuric acid + 50% gypsum showed maximum (34.95) number of bolls per plant followed by the plants treated with 100% gypsum (table 2). Minimum number of bolls per plant was recorded in control where no soil amendments were made. Boll weight is 2nd main yield contributing trait after number of bolls and have great contribution in enhancing the seed cotton yield. Hence maximum boll weight essentially obtains importance for development of cotton crop. Analysis of variance discovered that various amendments remarkably affected the boll weight (table 1). Highest weight of 3.07 g was documented in the plant treated with 50% sulphuric acid + 50% gypsum while lowest weight of 2.38 g was noted in control (table 2). Such variances in boll weight might be due to variation in prevailing growth conditions due to various amendments of soil. Plant height is very important yield attribute having significant association with bolls number and hence ultimate optimistic impact on yield. Mean performance of plant height portrayed remarkable variances amongst various amendments applied (table 1). Highest

plant height of 139.88 cm was documented in the plot treated with 50% sulphuric acid + 50% gypsum which was similar with 100% gypsum treated plants (table 2). Lowest plant height of 113.89 cm was noted in unamended plots.

Soil properties: The soil pH was determined by obtaining extract of 1:5 saturated soil paste which ranged from 8.39 to 8.54. After applying different amendments through same procedure the pH was determined and noted significant reduction in the soil pH (table 3). Minimum pH or maximum alteration impact was observed in 50% sulphuric acid + 50% gypsum treated plants (table 4). 8.94% reduction in soil pH was documented where 50% sulphuric acid + 50% gypsum was applied. Similarly, 100% SA and 100% gypsum also significantly reduced the soil pH. This reduction in pH might be attributed to the interchange of calcium on soil complex and elimination of sodium ions.

The electrical conductivity of the soil extract already prepared earlier than experiment for soil pH determination was measured gave quite high reading and ranged from 13.04 to 14.04 (table 4). After amending soil with different combinations of SA and gypsum it significantly reduced ECe (table 2). A maximum decline of 57% in EC_e was observed in the soil treated with 50% sulphuric acid + 50% gypsum. Other treatments also significantly reduced the EC_e in comparison to control. This lower electrical conductivity might be correlated with sodium ions dissolution from soil complex and as an improvement factor, it might leach down to deep soil due to application of the treatments. The ESP of the soil before application of amendments was quite high and ranged from 34.25 to 37.91. Application of different combinations of SA and gypsum significantly reduced this ESP (table 3). A maximum decline of 37% in ESP was observed in the soil treated with 50% sulphuric acid + 50% gypsum (table 4). Other amendments also significantly reduced the ESP as compared to control where no soil amendments were made.

Source of variation	n Degree of freedom		n Plant height (cm)		Number of bolls plant-1			1 We	ight of	boll (g)	Seed cotton yield (kg ha-1)			
Replication	n 2			3.218			1.1896)829	22711			
Treatment	5			353.653**			64.4682**			0.2418**		1067060**		
Error	10		13.740		9.1395				0.0666		27178			
CV%	<u>v%</u> -		2.94		10.11			9.50		6.39				
Table 1: Mean squar	res of seed co	d attributes as influenced by 2 bases				ses of s	s of sulphur (sulphuric acid and gypsum)							
Treatment		Plant he	eight (cm)	Bo	olls/plai	nt	Boll we	eight (g	g)	Seed o	otton yiel	d (kg/ha)	
Control		1	113.89 c		22.83 d		2.		.38 b		1782			
Gypsum @100% of SGR		1	137.50 a		34.41 ab		3.01 a			3226 a				
SA 25% + 75% gypsum		1	115.45 c		26.76 cd		2.47 b			2077 с				
SA 75% + 25% gypsum		1	123.43 b		29.31 bc		2.62 ab			2453 b				
SA 50% + 50% gypsum			l 39.88 a		34.95 a			3.07 a			3246 a			
SA @ 100% of SGR			26.59 b		31.18 abc 2			75 ab			2687 b			
LSD _{0.05}			6.74		5.50		0.47	0.47		299.92				
Table 2: Relative impact of 2 sources of sulphur (sulphuric acid and gypsum) on seed cotton yield and linked attributes.														
Course of	Decrea	of mU	hafana	ъ Ц	- Ch	F.C.	1 f	FC	ofton	ECD	hoforo	FCD	aftar	
Source of	Degree	ог рн	Defore	рп	atter	EC	before	EC	anter	esp	Delore	LOF	alter	
variation	Degree freedom	or pri sow	ing	рн harvest	after i	ec sowing	before g	harve:	st	sowing	G	harvest	t	
SourceOfvariationReplication	freedom 2	or pri sow	ing 0.010	harvest	after 1 55	EC sowing 0.7	before <u>3</u> 23	harve: 0.04	st 42	sowing 0.	935	harvest	t 34	
SourceOfvariationReplicationTreatment	freedom 2 5	or pri sow	ing 0.010 0.009 ^{NS}	harvest 0.005 0.267	after 1 55 6**	EC sowing 0.7 0.60	before <u>3</u> 23 9**	harve: 0.04 18.94	st 42 8**	sowing 0. 7.4	935 ·80**	harvest 0.8 37.4	34 02**	
SourceOfvariationReplicationTreatmentError	freedom 2 5 10	or pri sow	ing 0.010 0.009 ^{NS} 0.003	harvest 0.005 0.267 0.003	after 1 55 6** 30	EC sowing 0.7 0.60 0.1	5000000000000000000000000000000000000	harve: 0.04 18.94 0.10	atter st 42 8**)5	sowing 0. 7.4 0.	935 ·80** 453	harvest 0.8 37.4 0.6	334 02** 075	
SourceOfvariationReplicationTreatmentErrorCV%	Degree freedom 2 5 10	or pri sow	before ring 0.010 0.009 [№] 0.003 0.72	harvest 0.005 0.267 0.003 0.68	after 1 55 6** 30 3	EC <u>sowing</u> 0.7 0.60 0.1 2.4	before 223)9** .05 40	harve: 0.04 18.94 0.10 3.9	st 42 48** 505	sowing 0. 7.4 0.	935 :80** 453 .89	harvest 0.8 37.4 0.6 3.0	after t 02** 075 08	
SourceOfvariationReplicationTreatmentErrorCV%Table 3: Mean squar	freedom 2 5 10 - res of pH, EC	and ESP 1	before ing 0.010 0.009 [№] 0.003 0.72 pefore and a	harvest 0.005 0.267 0.003 0.68 fter soil a	anter 5 55 6** 30 3 amendm	EC sowing 0.7 0.6(0.1 2.4 nents w	23)9** .05 40 rith 2 base	harve 0.04 18.94 0.10 3.9 es of su	st 42 8** 05 0 lphur (ESP sowing 0. 7.4 0. <u>1</u> sulphur	935 -80** 453 .89 ic acid and	harvest 0.8 37.4 0.6 3.0 gypsum)	234 02** 02** 075 08	
Source Of variation	freedom 2 5 10 - res of pH, EC	and ESP t	before ing 0.010 0.009 ^{NS} 0.003 0.72 before and a H before	harvest 0.005 0.267 0.003 0.68 fter soil a e pH	after 55 6** 30 3 amendm after	EC sowing 0.7 0.60 0.1 2.4 nents w EC	223 99** 05 40 vith 2 base before	harves 0.04 18.94 0.10 3.9 es of su e EC	after st 42 8** 05 0 lphur (aft	sulphur er ESF 0. 7.4 0. 1	935 -80** 453 .89 ic acid and befor	harvest 0.8 37.4 0.6 3.1 gypsum) re ESP	after	
Source Of variation Replication Treatment Error CV% Table 3: Mean squar Treatment	Degree freedom 2 5 10 - res of pH, EC	and ESP t	before ing 0.010 0.009 ^{NS} 0.003 0.72 before and a H before arvest	harvest 0.005 0.267 0.003 0.68 fter soil a e pH harve	after 55 6** 30 3 amendm after est	EC sowing 0.7 0.60 0.1 2.4 nents w EC harv	23 99** 05 40 before est	barve: 0.04 18.94 0.10 3.9 es of su e EC harv	st 42 48** 05 0 lphur (aft vest	sowing 0. 7.4 0. 1 sulphur er ESF har	935 80** 453 .89 ic acid and befor vest	harvest 0.8 37.4 0.6 3.1 gypsum) re ESP harves	after 234 02** 75 08 after	
Source Of variation	Degree freedom 2 5 10 - res of pH, EC	and ESP t	before ing 0.010 0.009 ^{NS} 0.003 0.72 before and a H befores arvest 8.54	harvest 0.005 0.267 0.003 0.68 fter soil a e pH harve 8.	after 55 6** 30 3 amendm after est 48 a	EC sowing 0.7 0.60 0.1 2.4 nents w EC harv 1	223 99** 05 40 vith 2 base before est 3.04 c	EC harves 0.04 18.94 0.10 3.9 es of su e EC harv 1	st 42 48** 05 0 lphur (aft 7est 2.23 a	sowing 0. 7.4 0. 1 sulphur er ESF har	935 -80** 453 .89 ic acid and befor vest 34.45 b	harvest 0.8 37.4 0.6 3.1 gypsum) re ESP harve 31	after 234 02** 575 08 after est 74 a	
Source Of variation Replication Treatment Error CV% Table 3: Mean squar Treatment Control Gypsum @100% of	freedom 2 5 10 - res of pH, EC	and ESP t	before ing 0.010 0.009 ^{NS} 0.003 0.72 before and a H before arvest 8.54 8.42	ph a harvest 0.005 0.267 0.003 0.003 0.68 fter soil a e pH harvest 8. 7.4	after 5 55 6** 30 3 amendm after est 48 a 87 d	sowing 0.7 0.60 0.1 2.4 nents w EC harv 1 1	23 23 05 40 vith 2 base before est 3.04 c 3.98 a	bt harves 0.04 18.94 0.10 3.9 es of su e EC harv 1	after st 42 .8** 05 0 lphur (aft 7est 2.23 a 5.94 e	sowing 0. 7.4 0. 1 sulphur er ESF har	935 935 453 453 ic acid and befor vest 34.45 b 37.18 a	harvest 0.8 37.4 0.6 3.1 gypsum) 'e ESP harve 31 24	after est .74 a .75 a .75 a .75 a .74 a	
SourceOfvariationReplicationTreatmentErrorCV%Table 3: Mean squarTreatmentControlGypsum @100% ofSA 25% + 75% gyp	freedom 2 5 10 - res of pH, EC	and ESP t	before ing 0.010 0.009 ^{NS} 0.003 0.72 before and a H before arvest 8.54 8.42 8.48	ph a harvest 0.005 0.267 0.003 0.003 0.68 fter soil a a pH harvest 8. 7.3 8. 7.4	after 5 55 6** 30 3 amendm after est 48 a 87 d 26 b	EC sowing 0.7 0.60 0.1 2.4 nents w EC harv 1 1 1	23 23 05 40 140 141 2 base before est 3.04 c 3.98 a 4.04 a	bt harves 0.04 18.94 0.10 3.9 es of su e EC harv 1	after st 42 8** 05 0 1phur (aft 2.23 a 5.94 e 0.79 b	sowing 0. 7.4 0. 1 sulphur er ESF har	935 80** 453 .89 ic acid and befor vest 34.45 b 37.18 a 34.70 b	harvest 0.8 37.4 0.6 3.1 gypsum) re ESP harve 31 24 24 28	after 234 02** 075 08 after est 74 a 40 d 63 b	
SourceOfvariationReplicationTreatmentErrorCV%Table 3: Mean squarTreatmentControlGypsum @100% ofSA 25% + 75% gypSA 75% + 25% gyp	f SGR bsum bsum	and ESP I	before ing 0.010 0.009 ^{NS} 0.003 0.72 before and a H before 8.54 8.42 8.48 8.50	ph a harvest 0.005 0.267 0.003 0.68 0.68 fter soil a a pH harve a pH harve 8. 7.3 8. 8. 8.	after 5 55 6** 30 3 amendm after est 48 a 87 d 26 b 19 b	EC sowing 0.7 0.60 0.1 2.4 nents w EC harv 1 1 1 1	23 99** 05 40 before est 3.04 c 3.98 a 4.04 a 3.67 ab	bt harves 0.04 18.94 0.10 3.9 es of su e EC harv 1	after st 42 8** 05 0 1phur (2.23 a 5.94 e 0.79 b 3.78 c	sowing 0. 7.4 0. 1 sulphur er ESF har	935 80** 453 .89 ic acid and befor vest 34.45 b 37.18 a 34.70 b 37.91 a	harvest 0.8 37.4 0.6 3.1 gypsum) re ESP harve 31 24 28 27	after est .74 a .40 d .63 b .90 b	
SourceOfvariationReplicationTreatmentErrorCV%Table 3: Mean squarTreatmentControlGypsum @100% ofSA 25% + 75% gypSA 75% + 25% gypSA 50% + 50% gyp	freedom 2 5 10 - res of pH, EC	and ESP I	before ing 0.010 0.009 ^{NS} 0.003 0.72 0.72 0.72 0.72 0.60 0.72 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7	print and the second seco	after 5 55 6** 30 3 amendm after est 48 a 87 d 26 b 19 b 64 e	EC sowing 0.7 0.60 0.1 2.4 nents w EC harv 1 1 1 1 1 1 1	23 99** 05 40 rith 2 base before est 3.04 c 3.98 a 4.04 a 3.67 ab 3.08 bc	bt harves 0.04 18.94 0.10 3.9 es of su e EC harv 1	after st 42 8** 05 0 1phur (2.23 a 5.94 e 0.79 b 3.78 c 5.58 e	sowing 0. 7.4 0. 1 sulphur er ESF har	935 80** 453 .89 ic acid and befor vest 34.45 b 37.18 a 34.70 b 37.91 a 34.75 b	harvest 0.8 37.4 0.6 3.1 gypsum) re ESP harve 31 24 28 27 21	after 234 02** 75 08 after est .74 a .40 d .63 b .90 b .60 e	
SourceOfvariationReplicationTreatmentErrorCV%Table 3: Mean squarTreatmentControlGypsum @100% ofSA 25% + 75% gypSA 75% + 25% gypSA 50% + 50% gypSA @ 100% of SGR	freedom 2 5 10 - res of pH, EC	and ESP t	before ing 0.010 0.009 ^{NS} 0.003 0.72 before and a H before arvest 8.54 8.42 8.48 8.42 8.48 8.50 8.39 8.44	print and the second seco	after 55 6** 30 3 amendm after est 48 a 87 d 26 b 19 b 64 e 02 c	EC sowing 0.7 0.60 0.1 2.4 1 1 1 1 1 1 1 1 1 1 1 1 1	23 99** 05 40 vith 2 base before est 3.04 c 3.98 a 4.04 a 3.67 ab 3.08 bc 3.22 bc	harves 0.04 18.94 0.10 3.9 es of su e EC harves 1	after st 42 8** 05 0 1phur (aft 2.23 a 5.94 e 0.79 b 3.78 c 5.58 e 7.44 d	sowing 0. 7.4 0. 1 sulphur er ESF har	935 80** 453 .89 ic acid and befor vest 34.45 b 37.18 a 34.70 b 37.91 a 34.75 b 34.75 b 34.25 b	harvest 0.8 37.4 0.6 3.1 gypsum) re ESP harve 31 24 28 27 21 26	after 234 02** 75 08 after est .74 a .40 d .63 b .90 b .60 e .06 c	
SourceOfvariationReplicationTreatmentErrorCV%Table 3: Mean squarTreatmentControlGypsum @100% ofSA 25% + 75% gypSA 75% + 25% gypSA 50% + 50% gypSA @ 100% of SGRLSD0.05	freedom 2 5 10 - res of pH, EC	and ESP t	before ing 0.010 0.009 ^{NS} 0.003 0.72 before and a H before arvest 8.54 8.42 8.48 8.50 8.39 8.44 NS	print and the second seco	after 55 6** 30 3 amendm after est 48 a 87 d 26 b 19 b 64 e 02 c .10	EC sowing 0.7 0.60 0.1 2.4 nents w EC harv 1 1 1 1 1 1 1 1 1 1 1 1 1	23 09** 05 40 before est 3.04 c 3.98 a 4.04 a 3.67 ab 3.08 bc 3.22 bc 0.59	harves 0.04 18.94 0.10 3.9 es of su e EC harves 1	st 42 42 35 0 1phur (aft 2.23 a 5.94 e 0.79 b 3.78 c 5.58 e 7.44 d 0.58	sulphur er ESF bar	935 80** 453 .89 ic acid and befor vest 34.45 b 37.18 a 34.70 b 37.91 a 34.75 b 34.25 b 1.22	harvest 0.8 37.4 0.6 3.1 gypsum) re ESP harve 31 24 28 27 21 26 1	after 234 02** 75 08 after est .74 a .40 d .63 b .90 b .60 e .06 c .50	

Table 4: Relative impact of 2 sources of sulphur (sulphuric acid and gypsur**DISCUSSIONS:** Plant attributes: Various soil amendments areutilized for salt amelioration in salt affected soils like calciumchloride, Sulphur, sulphuric acid and calcium sulphate. Among thesegypsum is greatest frequently utilizing alteration on account of theirearly solubilization, easy and cost effective obtainability and easymanagement (Amezketa *et al.*, 2005; Abd El-Hady and Shaaban,2010). In calcareous soils having high pH, sulphuric acid may also beadded on account of their reaction with CaCO3 to produce gypsum(Wei *et al.*, 2006). Findings of the present investigation depicted thatvarious rate of gypsum and sulphuric acid considerably enhanced

seed cotton yield and their linked attributes (table 3). It was recorded that 50% sulphuric acid + 50% gypsum is the best soil amendment for improvement in seed cotton yield. This significant improvement in comparison to control can be on account of ameliorative performance of these alterations by lessening side effects of salinity. This might be by substituting sodium ions from exchange sites. The leach down of sodium ions from root zone, enhanced the physical attributes of soil leads to improved growing of crop in such amendments (Mohamed *et al.*, 2012). Similar crop improvements have also been recorded previously by Mahmood *et*

Online Available at: https://www.sciplatform.com/index.php/ijcrt/article/view/1451

al. (2010). As sulpher is important and indispensable plant nutrient and equally requires as of P (Ali et al., 2008). It is also protein structural unit having significant contribution in chlorophyll synthesis (Scherer et al., 2008). Thus it can be estimated that if sulpher in soil is not in optimum level, the yield potential of any crop cannot be fully achieved Tarafdar et al. (2005). Similarly, favorable pH of the soil is essential for soil nutrients obtainability (Wei et al., 2006). Sulphuric acid and gypsum application in the present investigation reduced the soil pH and thus improved the plant nutrients availability on account of their synergic impact with nitrogen (Chaubey *et al.*, 1993), phosphorus (Rahman et al., 2011) iron and manganese (Modaihsh et al., 1989) and zinc (Kayser et al., 2001). Sulphur application enhanced the tolerance level against salinity. Similarly favorable soil settings by dropping influence of salinity have been documented in Zea mays (Manesh et al., 2013), Brassica napus (Al- Solimani et al., 2010) and Triticum astivum (Ali et al., 2012), which strengthened results of the current investigation. Soil properties: Post-harvest soil samples analysis for pH, ECe and ESP revealed that linear falling trend in comparison to control in these soil attributes were observed due to the soil amendments with sulphuric acid and gypsum levels. Reduction of soil pH is of utmost importance on account of medium for plant growth having nutrient obtainability, providence of supplementary nutrients and threats of salinity. Sulphur sources are considered as the most adequate amendment for reducing the pH for any crop improvement (Tarek et al., 2013). In the present investigation, the pH reduction towards neutrality with sulphuric acid and gypsum might be due to direct effect of sulphuric acid (Singh et al., 2006). Current findings are in complete accordance to the previous outcomes of Kubenkulov et al. (2013) who also described that sulphur and gypsum are understandable amendments that regulates soil pH, EC, ESP, etc for saline sodic soils. Moreover, these alterations leached down the sodium from root zone which might be major reason to congregate pH, EC and ESP towards safe limits (Abdel-Fattah, 2012; Abdelhamid et al., 2013). A remarkable decrease in soil pH due to 50% sulphuric acid + 50% gypsum was also previously reported by Worku et al. (2016). Hussain et al. (1993) also observed a remarkable decreasing trend in pH of soil during the assessment of reclamation impact with sulphuric acid, gypsum and other alteration factors for long term. Similarly, Murtaza et al. (2012) elaborated that utilization of pyrites and gypsum at 50% GR, tremendously decreased ESP and EC when they are applied in saline sodic soils ..

CONCLUSIONS: The instant results concluded that 50% H₂SO₄ and 50% gypsum application results in excellent crop yield and enhanced soil physicochemical attributes on account of decreasing the soil pH, ECe and ESP. based on these results combined utilization of H₂SO₄ and gypsum is considered as the most advantageous for managing the saline soil with calcareous natur.

CONFLICT OF INTEREST: Author has no conflict of interest.

LIFE SCIENCE REPORTING: In current research article no life science threat was reported

ETHICAL RESPONSIBILITY: This is original research, and it is not submitted in whole or in parts to another journal for publication purpose.

INFORMED CONSENT: The author(s) have reviewed the entire manuscript and approved the final version before submission.

- **REFERENCE:** Abd El-Hady M., Shaaban S.M. 2010. Acidification of saline irrigation water as a water conservation tech- nique and its effect on some soil properties. American-Eurasian journal of agricultural & environmental sciences, 7: 463-470.
- Abdel-Fattah M.K., 2012. Role of gypsum and compost in reclaiming saline-sodic soils. Journal of agriculture veterinary science, 1: 30-38.
- Abdelhamid M., Eldardiry E., Abd ElHady M., 2013. Ameliorate salinity effect through sulphur application and its effect on some soil and plant characters under different water quantities. Agricultural sciences, 4: 39-47.
- Ali R., Khan M.J., Khattak R.A., 2008. Response of rice to different sources of sulfur (S) at various levels and its residual effect on wheat in ricewheat cropping system. Soil and environmental sciences, 27 (1): 131-137.
- Ali A., Arshadullah M., Hyder S.I., Mahmood M.A., 2012. Effect of different levels of sulfur on the productivity of wheat in a saline sodic soil. Soil and environment, 31(1): 91-95.
- Al-Solimani S.G., El-Nekhlawy F.S., AlMorshedy M.H., 2010. Improvement of canola seed yield and quality using sulphur and

irrigation intervals under different irrigation water salinity levels. Arab universities journal of agricultural sciences, 18(2): 263-270.

- Amezketa E., Aragüés R., Gazol R., 2005 Efficiency of sulfuric acid, mined gypsum and two gypsum byproducts in soil crusting prevention and sodic soil reclamation. Agronomy journal, 97: 983-989.
- Chaubey A.K., Dwivedi, K.N., Buddesh M., Mani, 1993 Response of linseed to N and S fertilization in alluvial soil of central region of U.P. Indian journal of agriculture chemistry, 26: 91-96.
- De Kok L.J., Castro A., Durenkamp M., Stuiver C.E.E., Westerman S., Yang L., Stulen I., 2002 - Sulfur in plant physiology. Proceedings No. 500, The International Fertiliser Society, York, UK, 1-26.
- FAO (1988). Salt affected soils and their management. soil resources, management and conservation service fao land and water development division. FAO soils bulletin 39, Rome, Italy.
- FAO. 2008. FAO Land and Plant Nutrition Management Service. Available at <u>http://www.fao.org/ag/agl/agll/spush</u>.
- Győri Z., 2005 Sulfur content of winter wheat grain in long term field experiments. Communications in soil science and plant analysis. Journal of cereal science, 36: 373-382.
- Hussain T, Jilani G, Haq A, Ahmad R. 1993. Management of brackish irrigation water with chemical amendment in conjunction with rice culture. Pakistan journal of soil science, 8: 42–47.
- Kampf A.N., Fior C.S. Fior, Leonhardt C., 2006. Lowering pH value with elemental sulfur in the substate for ex vitro acclimatization. ISHS Acta Horticulturae 812: III International Symposium on Acclimatization and Establishment of Micro propagated Plants.
- Kayser A., Schroder T.J., Grunwald A., Schulin R., 2001. Solubilization and plant uptake of zinc and cadmium from soils treated with elemental sulfur. International journal of phytoremediation, 3: 381400.
- Kubenkulov K., Naushabayev A., Hopkins D., 2013. Reclamation efficiency of elemental sulfur on the soda saline soil. World applied science Journal, 23 (9): 1245-1252.
- Mahmood I.A., Shahzad A., Salim M., Ali A., Zaman B., Mir A., 2010. Effect of calcium on nitrogen utilization by rice in saline soils. Pakistan journal of scientifica and industrial research, 53(3): 164-168.
- Manesh A.K., Armin M., Moeini M.J., 2013. The effect of sulfur application on yield and yield components of corn in two different planting methods in saline conditions. International journal of agronomy and plant production, 4 (7): 1474-1478.
- Mehran, M., Ashraf, M., Shahzad, S. M., Shakir, M. S., Azhar, M. T., Ahmad, F., and Alvi, A., 2023. Growth, yield and fiber quality characteristics of bt and non-bt cotton cultivars in response to boron nutrition. Journal of cotton research, 6(1), 1.
- Modaihsh A.S., Al-Mustafa W.A., Metwally A.I., 1989. Effect of elemental sulfur on chemical changes and nutrient availability in calcareous soil, Plant and Soil, 116: 95-101.
- Mohamed H.A.H., Ali E.A.D.M., Mohammed H.I., Idris A.E., 2012 -Improving the properties of saline and sodic soils through integrated management practices. Global journal of plant ecophysiolgy, 2(1): 44-53.
- Muhammad A.J., Rafiq M., Baqi A., Rahman H., Wahab F., 2007 -Effect of different sources of sulfur on soil properties and physiochemical characteristics of *Citrus limon L.* (cv. Lisbon) grown on alkaline soil in fata. Sarhad journal of agriculture, 23(1): 95-99.
- Munns, R. and M.Tester. 2008. Mechanisms of salinity tolerance. Annual review of plant biology, 59:651–681.
- Murtaza G., Kahlon U.Z., Ghafoor A., Murtaza B., 2012. Amelioration of saline-sodic soil with amendments using brackish water, canal water and their combination, International journal of agriculture and biology. 14: 38–46.
- Pitman, M.G. and A.Läuchli. 2002. Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment plants molecules. Kluwer, Dordrecht, pp 3 20.
- Qadir, M., and Oster J.D., 2002. Vegetative bioremediation of calcareous sodic soils: history, mechanisms and evaluation. Irrigation science. 21. 91-101.
- Rahman M.M., Abdou A.S., Darwish F.H.Al., El-Tarabily K.A., Awad M.A., Golam F., Azirun M.S., 2011. Influence of elemental sulfur on nutrient uptake, yield and quality of cucumber grown in sandy calcareous soil. Austarlian journal of crop science, 5(12): 1610-1615.

Richards, L.A. 1954. Diagnosis and improvement of, US Depatment of Agriculture Handbook No. 60, Washington, DC.

- Scherer H.W., Pacyna S., Spoth K.R., Schulz M., 2008. Low levels of ferredoxin, ATP, and leghemoglobin contribute to limited N2 fixation of peas (Pisum sativum L.) and alfalfa (Medicago sativa L.) under S deficiency conditions. Biology and fertility of soils, 44(7): 909-916.
- Singh R.N., Singh S., Singh B., 2006. Interaction effect of sulphur and boron on yield, nutrient uptake and quality characters of soybean (Glycine max L. Merrill) grown in acidic upland soil. Journal of the indian society of soil science, 54 (4): 516-518.
- Singh J., Kairon M.S., 2001. Yield and nutrient contents of cotton (*Gossypium hirsutum*) and sunflower (*Helianthus annuus*) as influences by applied sulfur in irrigated inceptisol. Indian journal of Agriculture sciences, 71(1): 35-37.
- Stamford N.P., Freitas A.D.S., Ferraz D.S., Santos C.E.R.S., 2002. Effect of sulphur inoculated with Thiobacillus on saline soils amendment and growth of cowpea and yam bean legumes. The journal of agricultural sciences, 139(3): 275-281.
- Steel R.G.D., Torrie J.H., Dickey D.A., 1997. Principles and procedures of statistics: a biometrical approach. 3rd Ed. Mc Graw Hill book Co. Inc. New York, USA. 400-428.

- Tarafdar J.C., Sharma S.K., Bhandari S.C., Saini V.K., 2005. Assessment of microbial biomass under integrated nutrient management in soybean-winter maize cropping sequence. Journal of indian society of soil science, 53 (3): 346-51.
- Tarek M.A.S., El-Keltawi N.E., Khan M.A., Nan M., L.J. Zhao, 2013. Plant growth and flowering of cape jasmine (*Gardenia jasminoides* E) in various substrates amended with sulphur. Global journal of plant ecophysiology, 3(2): 36-43.
- Tzanakakis V.A., Paranychianakis N.V., Londra P.A., Angelakis A.N., 2011. Effluent application to the land: changes in soil properties and treatment potential. Ecological engineering journal, 37: 1757-1764.
- Wei X., Hao M., Shao M., Gale W.J., 2006. Changes in soil properties and the availability of soil micronutrients after 18 years of cropping and fertilization. Soil and tillage research, 91: 120-130.
- Worku A., Minaleshewa M., kidan H.G., 2016. Impact of gypsum and sulfuric acid application on cotton yield under saline sodic soil condition in Melka Sadi Irrigated Farm. Academia journal of agricultural research, 4(2): 091-095.

Except where otherwise noted, this item's licence is described as © **The Author(s) 2024**. Open Access. This item is licensed under a **Creative Commons Attribution 4.0 International License**, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the **Creative Commons license**, and indicate if changes were made. The images or other third party material in this it are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.