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Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects millions of individuals worldwide, with an increasing 
prevalence in aging populations. In this study, we retrieved the mRNA expression dataset, GSE165082, for PD through GEOmnibus. Total 
of 220 downregulated and 354 upregulated genes were identified after data normalization. Functional annotation carried out by DAVID 
tools, revealed that these DEGs were mainly enriched in biological processes i.e., cell division and protein phosphorylation, and they 
were localized mostly cytoplasm and nucleus. Two molecular function protein binding and ATP binding were predominant.  Additionally 
KEGG pathway analysis highlighted their involvement in neurodegenerative, cancer, alzheimer's and coronavirus diseases. Armadillo-
type fold and Armadillo-like helical domains were found by INTERPRO while TKc domain by SMART. Transcription factors IRF1 was 
predicted by FunRich tool. Upregulated genes were found expressed in 6 sites i.e., Palate, Ventral striatum, Pluripotent stem cells, 
Ganglia, Curtilage and Ciliary muscle. A protein-protein interaction network was constructed by using Cytoscape v 6.0. Ten hub genes 
EFI3A, RPL28, SMG8. UPF2, XAF1, IFITM1, IFIT3, LY63, IFI3 and LY6B were identified by Cytohubba. The expression patterns of hub 
genes across different organs and immune response cells using a heatmap and expression of EIF3 was found in almost all organs except 
liver. MicroRNA for were predicted by FunRich tool. Finally, we predicted microRNAs for RPL28, SMG8, UPF2 and EIF3a that could 
potentially regulate these hub genes, providing insights into post-transcriptional gene regulation. This comprehensive analysis 
contributes to our understanding of the molecular mechanisms underlying Parkinson's disease and provides a foundation for future 
research and therapeutic development in this complex and challenging condition.  
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INTRODUCTION: Parkinson's disease is a neurodegenerative 
disorder that primarily affects movement and is characterized by a 
range of motor and non-motor symptoms (De Lau and Breteler, 
2006). It is named after Dr. James Parkinson, who first described the 
condition in his groundbreaking essay, "An Essay on the Shaking 
Palsy," published in 1817 (Parkinson, 1817). This landmark 
publication laid the foundation for our understanding of the disease.  
Parkinson's disease is estimated to affect millions of individuals 
worldwide, with an increasing prevalence in aging populations. The 
condition results from the progressive degeneration of 
dopaminergic neurons in a specific region of the brain called the 
substantia nigra (Gao et al., 2002). This neuronal loss leads to a 
shortage of a neurotransmitter crucial for regulating movement i.e., 
dopamine. The cardinal motor symptoms of Parkinson's disease 
include resting tremors, bradykinesia (slowness of movement), 
rigidity, and postural instability. Additionally, non-motor symptoms 
such as depression, anxiety, cognitive impairment and autonomic 
dysfunction often coexist and can significantly impact a patient's 
quality of life (Jankovic, 2008). Several treatment options are 
available to manage its symptoms and improve the patient's overall 
well-being (Armstrong and Okun, 2020). These treatments include 
medication, physical therapy, and in some cases, surgical 
interventions like deep brain stimulation. Ongoing research efforts 
continue to explore the underlying mechanisms of Parkinson's 
disease and seek innovative therapies that may one day slow or halt 
its progression. Parkinson's disease remains a significant medical 
challenge, highlighting the importance of continued research and 
support for affected individuals and their families. With the 
advancement of genomic technologies, The investigation of gene 
expression patterns to understand the molecular causes of diseases 
and finding disease-specific biomarkers has grown popularly (Can, 
2014). Differential gene expression analysis is a highly effective tool 
for analyzing the molecular processes underpinning genome 
regulation and identifying quantitative differences in expression 
levels between experimental groups and control groups (San 
Segundo-Val and Sanz-Lozano, 2016). These variations in gene 
expression may help identify potential biomarkers for a particular 
disease. Gene ontology and enrichment analysis are useful 
technique for comprehending gene function and gene connection 
from genome-wide expression (Langfelder and Horvath, 2008). 
These can be used to find relevant modules linked to clinical 
features and co-expression modules of highly correlated genes 
(Zhang and Horvath, 2005). providing great insight into predicting 
the functions of co-expression genes and finding genes that play key 
roles in human diseases (Li et al., 2018; Yang et al., 2014). In this 
study, differential co-expression genes were identified using 
expression the mRNA expression data of Parkinson’s disease GEO 
databases. We have identified important genes involved in disease 

prognosis by performing functional enrichment, protein-protein 
interaction (PPI) analysis.  These genes can be used as therapeutic 
targets for disease treatment therapies. The global Parkinson's 
disease (PD) population was estimated to be 9.4 million in 2020, 
surpassing the previously reported figure of 6 million cases in 2016 
(Dorsey et al., 2018; Yang et al., 2020). This increasing trend in PD 
prevalence depicts the urgent requirement for initiatives to address 
this issue and design effective therapies to manage this  complex 
challenging disease. 
OBJECTIVES: The objectives of this study were as follows: (1) to 
determine the functionality and localization of DEGs (2) 
Identification of hub genes. (3) Interaction network analysis of hub 
genes and other genes in human being. (4) Identification miRNA for 
the hub genes regulation. 
MATERIAL AND METHODS: Data retrieval, normalization and 
statistical analysis: Dataset was retrieved from Gene Expression 
Omnibus (GEO) database by using GSE165082 accession query. The 
data set was taken from an experiment of DNA methylation and 
expression profiles of whole blood in Parkinson’s disease done by 
expression profiling by high throughput screening (Henderson et al., 
2021). Total number of samples in dataset was 26 (14 were 
healthy/control and 12 were unhealthy/diseased). GSE165082_PD-
CC.counts.txt.gz ftp file was downloaded for analysis.   
The mRNA expression data was statistically analyzed using 
“BiocManager” Packages of R.  The normalization and statistical 
analyses of data was done by installing “DeSeq2” library of 
“BiocManager” in R.  These normalization techniques help us to 
handle numerical variables of varying units and scales, thus 
improving the quality of data.  The purpose of normalization is to 
remove systematic variation in a microarray experiment which 
affects the measured gene expression levels (Park et al., 2003). The 
output expression file was saved in .csv format. The Gene Ensemble 
IDs in the output file were converted to Gene IDs by submitting to 
Ensemble BioMart. Differentially expressed genes (DEGs) were 
identified on the basis of Log fold Change (LogFC2) value. The 
threshold for LogFC2 was set as >1 and p value< 0.05. 
Functional annotation analysis of DEGs: For Gene Ontology 
Database for Annotation, Visualization and Integrated Discovery 
(DAVID) was used in the present study. It provides a comprehensive 
set of functional annotation tools for investigators to understand 
biological meaning behind large list of genes (Dennis et al., 2003). 
The list of DEGs was submitted to DAVID for functional annotation 
analysis.  
Protein domain and transcription factor prediction: The 
enrichment of DEGs in protein domains was predicted by two 
databases SMART and INTERPRO. The results were selected on the 
basis of threshold p-value. Transcription factor (TF) (or sequence-
specific DNA-binding factor) is a protein that controls the rate of 
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transcription of genetic information from DNA to messenger RNA, 
by binding to a specific DNA sequence (Latchman, 1997). The 
transcription factors for DEGs were predicted by FunRich Gene 
Enrichment module.  
Site of Expression of DEGs: The genes are either upregulated or 
downregulated in their expression. The sites for upregulated and 
downregulated gene expression were investigated by using FunRich 
gene expression module. 
Protein-Protein Network and Identification of Hub genes: The 
list of DEGs imported to network construction and visualization tool 
Cytoscape v.2.3 (Cline et al., 2007). Protein - Protein Interaction of 
gene submitted list was constructed by using inbuilt plugin STRING. 
The node colors were assigned as per their expressions by using 
option from style menu. The preferred string type layout was 
selected for network display. The hub genes were identified from 
the main network by using Cytohubba tool. This tool identifies the 
hub genes based on Nodes score. Twelve different statistical 
approaches are used for hub genes score calculation & identification 
by this tool. The list of hub genes for each method was downloaded 
& saved. Consensus genes from more than 5 methods out of 12 were 
selected as hub genes of the Parkinson’s disease datasets 
GSE165082. 
Protein-protein Network construction, heat map plotting and 
micro RNA (miRNA) prediction for hub gene: The list of selected 
genes was imported to Cytoscape and plugin GeneMANIA was 
selected for interaction network of query hub genes with other 
human (Homo sapiens) genes. 
A common method of visualizing gene expression data is to display 
it as a heatmap. In heat maps the data is displayed in a grid form 
where each row represents a gene and each column represents a 
sample. The color and intensity of the boxes is used to represent 
changes (not absolute values) of gene expression (Haarman et al., 
2015). The heat map for hub genes was plotted by using FunRch 
heatmap generation module.  
MicroRNAs (miRNAs) are small non-coding nucleic acids. These are 
involved in regulating post-transcriptional gene expression by 
binding to complementary sequences of target messenger RNA 
(mRNA) (Lukiw and Alexandrov, 2012). The miRNA for the hub 
genes were predicted by FunRich miRNA prediction module.  
RESULTS: The normalized dataset, GSE165082, consisted of 220 
downregulated and 354 upregulated genes, was used for further 
analysis 

Functional annotation analysis of DEGs: The highest number of 
genes (20) were found to be enriched in two biological processes i.e., 
cell division and protein phosphorylation (figure 1a). The DEGs 
were found to be localized in seventeen cellular location with 
highest number 166 in cytoplasm followed by 163 genes were found 
in nucleus (figure 1b). Twelve molecular functions were predicted 
for query genes (figure 1c). Less than twenty genes were found to 
be involved in each of ten molecular functions. Highest number of 
genes (271) were found for protein binding followed by those for 
ATP binding (57 genes). Similarly, KEGG pathway enrichment 
analysis showed that the DEGs mainly participated in 
neurodegenerative disease (24), cancer (23), alzheimer disease (20) 
and corona virus disease (16) pathways (figure 1d). 
Protein domain and transcription factor prediction: The results 
from two domain databases SMART and INTERPRO were selected 
based on threshold p-value≤0.05. INTERPRO predicted 14 domains 
with highest gene count (22) for Armadillo-type fold domain and 15 
genes were found to be involved in Armadillo-like helical domain 
(figure 2a). Only 3 domains were predicted by SMART with highest 
gene count (17) for S-TKc domain (figure 2b). The Transcription 
factor for whole data set was IRF1 representing 50% of genes and 
lowest p-value 0.098 (figure 3). In case of hub genes although 
IRF1represent small percentage of genes (9.47%) but lowest p-
value 0.047 make it potential transcription factor with 94.9% 
confidence. Other transcription factors were SP4, KLF7, SP1, NRF1 
and GABPA.  
Site of Expression of DEGs: In current study the genes were found 
downregulated in six expression sites with -100 Fold Change (FC) 
value i.e., Peyer’s patches, Synovial cell, Transverse mesocolon, Lung 
epithelium, Articular cartilage and Subthalamus (figure 4). These 
were found to upregulated in six sites i.e., Palate, Ventral striatum, 
Pluripotent stem cells (FC 19.4) Ganglia, Curtilage and Ciliary 
muscle (FC 38.7).  
Protein-Protein Interaction Network and Identification of Hub 
Genes: Main network containing 572 genes (nodes) was 
constructed (figure 5) by using Cytoscape. Red nodes represent 
upregulated genes while the green ones were for downregulated. 
The Interaction between the nodes shows by the edges. Ten hub 
genes were identified by each of 12 methods used by CytoHubba 
(table 1). 

 
Figure 1: Number of genes of Parkinson’s disease (GSE165082) involved in different Gene Ontology events. (a) Biological processes (b) 
cellular components (c) molecular functions (d) KEGG pathways. 

 
Table 1: Hub genes of Parkinson’s disease dataset GSE165082 predicted by Cytohubba. 

 

NO 

Statistical methods used for mapping hub genes 

Frequ
ency  

Consensus 
Hub genes 

BETWe
enness 

Botteln
eck 

Closenes
s 

ClusCoe
ffiecit Degree DMNC 

EcCent
ricity EPC MCC MNC Radiality Stress 

1 RPL28 RPL28 IFIT3 SMG8 IFIT3 XAF1 IFIT3 IFITM1 ISG15 ISG15 RPL28 RPL28 10 RPL28 

2 IFIT3 IFIT3 IFI6 LY6E IFI6 IFI35 IFI6 IFI6 RSAD2 SMC3 SMG8 IFIT3 11 IFIT3 

3 IFI6 IFI6 XAF1 IFI35 XAF1 IFI6 XAF1 LY6E OAS2 RPS5 UPF2 IFI6 11 IFI6 

4 SMG8 SMG8 IFITM1 IFITM1 IFITM1 IFITM1 IFITM1 XAF1 OAS1 RPS24 EIF3A SMG8 11 SMG8 

5 UPF2 UPF2 IFI35 IFIT3 IFI35 IFIT3 IFI35 IFIT3 IFIT3 RSAD2 IFIT3 UPF2 9 UPF2 

6 XAF1 XAF1 LY6E XAF1 LY6E EIF3A LY6E IFI35 XAF1 PTPRC IFI6 XAF1 11 XAF1 

7 IFITM1 IFITM1 RPL28 UPF2 RPL28 UPF2 RPL28 RPL28 IFI35 RAD21 XAF1 IFITM1 11 IFITM1 

8 EIF3A EIF3A SMG8 IFI6 SMG8 SMG8 SMG8 UPF2 IFI6 RPL26 IFITM1 EIF3A 10 EIF3A 

9 IFI35 IFI35 UPF2 RPL28 UPF2 LY6E UPF2 SMG8 IFITM1 USP18 IFI35 IFI35 11 IFI35 

10 LY6E LY6E EIF3A EIF3A EIF3A RPL28 EIF3A EIF3A USP18 SOCS1 LY6E LY6E 10 LY6E 
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The top ten genes appeared in more than 5 methods were selected 
as consensus hub genes data set GSE-165082.  

 
Figure 2: The number of genes of Parkinson disease (GSE165082) 
involved in different protein domains predicted by (a) INTERPRO 
(b) SMART. 

 
Figure 3: Transcription Factor for GSE165082 and hub genes of 
GSE165082. 

 
Figure 4: : Site of expression for genes in data set GSE165082 for 
Parkinson disease. 

Figure 5: Protein-protein Interaction network of genes involved in 
Parkinson’s disease (GSE165082). *Red nodes= down regulated 
genes, Green node= upregulated genes. 
Protein-protein network construction, heat map plotting and 
micro RNA (miRNA) prediction for hub gene: The hub genes 
showed interaction with each other & nineteen other genes (figure 
6a). The Black color nodes (EFI3A, RPL28, SMG8. UPF2, XAF1, 
IFITM1, IFIT3,LY63, IFI35) indicates the query hub gene while the 
grey color nodes (BST2, RSAD2, ADAR, STAT2, ISG20, RSAD2, 
RNASEL, IFITM2, GBP2, IRF9, ISG15, IFIT2, IFITM3, IFI27, IF144L, 
IP6K2, EGR1, MX1, QAS1, QAS2) represent  interacting other genes.  

The heat map shows the expression of hub genes in different adult 
and fetal organs and in immune response cell (figure 6b).  

 
Figure 6: Presentation of interactions and enrichment of hub genes 
of data set GSE165082. (a) Protein-protein network with other 
genes in human (Black nodes=query genes, Grey nodes= interacting 
human genes). (b) Heat map for expression of hub genes. 
The expression of a gene in the cell is represented by its z-score 
(legend). The value of z-score is directly proportional to its color. 
Only one gene, EIF3A, showed sharpest red color for almost all the 
categories except for adult kidney. This shows high expression of 
this gene in almost all the mentioned localization. MicroRNA 
(miRNA) have been predicted in the case of four hub genes, RPL28, 
SMG8, UPF2 and EIF3a (table 2). Eight miRNAs were predicted 
against UPF2 while only three for SMG8. 
DISCUSSIONS: Differentially expressed genes (DEGs) from RNAseq 
dataset of Parkinson’s disease were obtained from GEOomnibus 
database. We used the freely accessible, Database Visualization and 
Integrated Discovery (DAVID, http://david.niaid.nih.gov) for gene 
annotation analysis (Huang et al., 2009). These biological 
annotation of genes was done in terms of biological processes, 
cellular localization and molecular functions (Garcia-Moreno et al., 
2022). Most of the genes were found be involved in protein 
phosphorylation and cell division. It has been reported that 
abnormal protein phosphorylation plays a key role in the 
development and progression of Alzheimer disease (AD). According 
to a research, changes in the pattern of protein phosphorylation of 
various brain regions may enhances AD progress from a pre-
symptomatic to a symptomatic condition in response to the buildup 
of amyloid β-peptide (Perluigi et al., 2016). Amyloid-beta and tau  

 Table 2: miRNA predicted for hub gene of data set GSE165082 of 
Parkinson’s disease. 
proteins may interact with each other to enhance the nucleation and 
propagation of different neurological diseases (Thompson et al., 
2020). Aberrant phosphorylation of several proteins occurs in the 
brain of AD patients and also in its prodromal phase, amnestic mild 
cognitive impairment (MCI) (Chung, 2009; Thomas et al., 2009). The 
neuronal cells undergo mitotic catastrophe and endoreduplication 
prior to cell death in Parkinson's disease (Wang et al., 2014). Cell 
cycle activation and cell cycle re-entry are thought to be critical 
causes of neuronal death resulting in neurodegenerative disorders 
(Ogawa et al., 2003).  

NO Target 
Gene 

miRNA 

1 
RPL28 

hsa-miR-137; hsa-miR-652-3p; hsa-miR-3064-
5p; hsa-miR-6504-5p 

2 
SMG8 

hsa-miR-200b-3p; hsa-miR-200c-3p; hsa-miR-
429 

3 UPF2 
hsa-miR-103a-3p; hsa-miR-107; hsa-miR-219a-
5p; hsa-miR-138-5p; hsa-miR-143-3p; hsa-miR-
493-3p; hsa-miR-4782-3p; hsa-miR-6766-3p 

4 
EIF3A 

hsa-miR-182-5p; hsa-miR-424-5p; hsa-miR-488-
3p; hsa-miR-497-5p; hsa-miR-500b-5p 

http://david.niaid.nih.gov/
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The highest number of DEGs were found to be involved in two 
molecular functions i.e., protein binding and ATP binding. The 
important landmark of neurodegenerative diseases is accumulation 
of protein inclusions, might be due to some mutation in genes 
encoding for aggregation-prone proteins (Calabrese et al., 2022). 
ATP binding ABC transporters are predominantly expressed in the 
brain (Katzeff and Kim, 2021)  and dysregulation thought be linked 
with progression of neurodegenerative diseases (Katzeff et al., 
2022). The KEGG pathway analysis predicts the genes involved in 
different biological pathways (Ogata et al., 1998). The highest 
number of genes from our dataset were found to be involved in 
neurodegenerative disease (24), cancer (23), alzheimer disease (20) 
and corona virus disease (16). It was reported that COVID increase 
the chances for neurodegenerative disease (Li et al., 2022). The 
common genes involved in COVID 19 and neurodegenerative 
diseases have been used as common drug targets (Deng et al., 2023). 
Many progeria syndromes are connected to an increased risk of 
developing both cancer and central nervous system (CNS) diseases 
(Navarro et al., 2006).  
Highest gene count (22) for Armadillo-type fold domain were 
predicted by INTERPRO. The highest number of genes (17) were 
found to be part of S-TKc domain predicted by SMART.  S-TKc is a 
conserved protein kinase domain which is involved in 
phosphorylation (Hanks et al., 1988)  this is the major molecular 
function for DEGs has been predicted in current study. The 
armadillo repeats, ankyrin repeats and leucine-rich repeats 
together form an extended N-terminal flexible 'solenoid'-like 
structure composed of tandem repeat modules likely to be 
important in anchoring to the membrane and cytoskeletal 
structures as well as binding to other protein ligands (Mills et al., 
2012). In the current study protein-protein binding has been 
predicted as a major molecular function of DEGs related to 
Parkinson disease. 
Parkinson's disease (PD) is a condition associated with the 
degeneration of dopaminergic neurons in the basal ganglia and 
associated areas of the brain (Rusz et al., 2016). The Parkinson 
disease affects the motion and speech of a person (Vandana et al., 
2021). The results of current study showed DEGs found to be 
upregulated in Palate, Ventral striatum, Pluripotent stem cells, 
Ganglia, Curtilage and Ciliary muscle. All these sites are linked with 
nervous system and oral functions 
Interferon regulatory factor 1 (IRF1), a major transcription factor 
predicted for DEGs in current dataset. It is an important protein 
encoded by the IRF1 gene in human (Itoh et al., 1991). In the current 
study hub genes were found to be interacting with other genes 
involved in interferon activities. A major factor in CNS disorders and 
neuro-inflammation is microglial activation. The transcription 
factor interferon regulatory factor 1 (IRF1) plays crucial roles in 
microglial activation and retinal inflammation through controlling 
the expression of pro- and anti-inflammatory genes (Yang et al., 
2022). IRF1 is also main transcription factor for IFN-1 (Kano et al., 
2008). Type I interferon (IFN-I) is an innate cytokine family 
produced in response to viral infections as a first line of defense for 
the host (Roy and Cao, 2022). It’s strictly regulated production is 
necessary for normal functioning. Persistently elevated IFN-I levels 
result in auto-inflammatory diseases in multiple organs including 
brain (Crow and Stetson, 2022). 
Hub genes CytoHubba, evaluates the significance of the nodes in a 
biological network as well as to select the key genes in protein-
protein network by using 12 different statistical approaches i.e., 
Degree, Edge Percolated Component (EPC), Maximum 
Neighborhood Component (MNC), Density of Maximum 
Neighborhood Component (DMNC), Maximal Clique Centrality 
(MCC), Bottleneck, EcCentricity, Closeness, Radiality, Betweenness, 
Stress and Clustering Coefficient (Chin et al., 2014a). These methods 
are categorized into 2 main groups: i.e., local and global methods. A 
local method just inspect the link between the node and its 
neighbors for calculating the node score with in a network, on the 
other hand, the link between the whole network and its nodes can 
be scrutinize by global method. Degree, MNC, DMNC, MCC are local 
methods and Closeness, EcCentricity, Clustering Coefficient, 
Radiality, Stress, Betweenness, EPC and BottleNeck are global 
methods (Chin et al., 2014b). We have identified 10 hub genes, 
RPL28, IFIT3, IFI6, SMG8, UPF2, XAF1, IFITM1, EIF3A, IFI35, LY6E, 
by using Cytohubba.  Six hub genes are related to interferon activity 
IFIT3, IFI6, XAF1, IFITM1, EIF3A, IFI35. Interferon factors are 
important to maintain the homeostasis of central nervous system 

(Biernacki et al., 2005). Some IFNs plays a crucial role by promoting 
the secretion of nerve growth factor (Tan et al., 2022). 
The interaction network of hub genes with other human genes was 
created by GeneMANIA. The node size of interacting genes vary 
according to the confidence score of prediction.  The edge thickness 
shows strength & weight of interaction (Mostafavi et al., 2008). The 
edge colors shows type of interaction study purple edges represent 
co-expression & blue represents genes in common pathways 
(Zuberi et al., 2013). Six genes ISG15 (4.52), IFTI27 (4.49), IFIT1 
(4.49), IFITM3 (4.38), IRF9 (4.32) and ADAR (4.06) represented by 
larger nodes showed higher confidence of prediction. In our 
datasets highest scored four genes have interferon related activity 
i.e., IFTI27 is interferon alpha inducible protein, IFIT1interferace 
induced protein with tetratricoprotien repeat, IFITM3 interferon 
induce transmembrane induce protein and IRF9 interferon 
regulatory factor. These are very important factors in nervous 
system processes Downregulation of interferon signaling activity 
may increase the probability of neurodegenerative illness 
progression and hence serve as a biomarker for disease prognosis 
(Song et al., 2022).  
Translational control is important in regulating gene expression and 
takes place predominantly during the initiation step, which involves 
numerous eukaryotic translation initiation proteins (EIFs) (Dong et 
al., 2009; Mathews et al., 2000). EIF3 complex, is the largest 
initiation complex in human and critically involved in mRNA 
translation for cell proliferation (Dong et al., 2009; Dong and Zhang, 
2006). In the current studies highest expression level of EIF3A in all 
the categories has been supported by the fact that these genes are 
components of eukaryotic translation complex. 
The miRNA have been predicted in case of four hub genes, RPL28, 
SMG8, UPF2 and EIF3a with highest numbers (8) for UPF2. UPF1 
(Up-frameshift protein 1) plays very important role in 
neuroprotective disease by inhibiting the accumulation of misfolded 
proteins in the cell (Staszewski et al., 2023). The microRNA (miRNA) 
is a type of single-stranded, 18-25nt long, RNA. They can regulate 
the expression of other protein-coding genes so, served as medically 
important biomarkers (Ying et al., 2008). Micro RNA (miRNA) can 
be used alternate targets (Ardekani and Naeini, 2010) as they can 
remain more stable than mRNA in the cell (Angelucci et al., 2019; 
Sun et al., 2018). 
CONCLUSIONS: The integrative bioinformatics analysis of 
differentially expressed genes in Parkinson disease from dataset 
GSE165082 revealed: The DEGs were found to be localized mainly 
in cytoplasm and nucleus and significantly involved in cell division 
(biological processes) and molecular functions like protein binding 
and ATP binding. These were also predicted to be involved in some 
disease pathways i.e., neurodegenerative diseases, cancer, 
alzheimer’s disease, and coronavirus disease. These genes were also 
reported to be enriched in important protein domains with highest 
prevalence in Armadillo-type fold domains.  The IRF1 was identified 
as the most significant transcription factor for the IFN related DEGs 
in dataset.  The gene were found upregulated in Palate, Ventral 
striatum, Pluripotent stem cells, Ganglia, Curtilage and Ciliary 
muscle. Ten hub genes, EFI3A, RPL28, SMG8. UPF2, XAF1, IFITM1, 
IFIT3, LY63, IFI3 and LY6B, were identified, by using 12 statistical 
methods. The miRNA prediction for hub genes resulted in eight 
miRNAs against UPF2 while only three for SMG8. In the heat map 
EIF3A showed sharpest red color for almost all the categories except 
for adult kidney. Overall, this analysis provides valuable insights 
into the molecular mechanisms, potential disease associations, and 
regulatory factors governing the expression of DEGs in the 
GSE165082 dataset. These findings can be served as a baseline 
information in understanding the biological significance of 
differentially expressed genes. These findings also provides an 
insight into the important biomarkers for therapeutic strategies 
against this disease.  
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