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 ABSTRACT 

The increasing demand for accelerated and cost-effective drug discovery has prompted researchers to adopt computational approaches, 
leading this study to focus on repurposing FDA-approved drugs as potential inhibitors against Marburg virus (MARV) by targeting its 
envelop glycoprotein (UniProt ID: P35253), whose 3D structure was predicted using I-TASSER. Virtual screening of FDA-approved 
compounds via PyRx and AutoDock Vina identified ZINC000012503187 and ZINC000096006020 as top candidates, with binding 
interactions analyzed in BIOVIA Discovery Studio and complex stability assessed through Desmond MD simulations. These compounds 
exhibited strong binding affinity and antiviral potential, suggesting their repurposing as effective MARV inhibitors with minimal side 
effects, though further experimental validation is necessary to confirm their therapeutic efficacy. 
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INTRODUCTION: The threat presented by the Marburg Virus looms 
big in the never-ending search for viable treatments against newly 
and remerging infectious illnesses. Similar to the infamous Ebola 
Virus and a member of the Filoviridae family, the Marburg Virus has 
been linked to rare but serious outbreaks with high rates of 
morbidity and fatality (Bausch and Schwarz, 2014). The challenge of 
creating specialized antiviral drugs persists after decades of study, 
prompting experts to look for new approaches to medication 
discovery and development (Malvy et al., 2019). Computational 
biology, bioinformatics, and molecular dynamics simulations have 
all converged because of the need for quick, inexpensive, and 
precision-driven drug discovery (Iqbal et al., 2020; Lin et al., 2020). 
This study aims to use these combined approaches to identify target 
proteins and repurpose FDA-approved medications as possible 
Marburg Virus inhibitors, providing a viable way to quicken the 
development of antiviral treatments (Pushpakom et al., 2019).  
Due to its ability to cause epidemics with a high mortality rate, the 
Marburg Virus poses a serious threat to the security of the global 
health system. Traditional drug discovery methods are burdened by 
expensive and time-consuming procedures, sometimes necess-
itating years of research and development before a medicine is 
commercially available (Gatherer, 2014; Grobler et al., 2020). In 
contrast, drug repurposing offers an enticing avenue for accelerated 
drug development by bypassing the early stages of preclinical and 
clinical trials, thus hastening the availability of life-saving 
treatments (Ashburn and Thor, 2004). An essential first step in 
repurposing drugs for Marburg Virus is the identification of target 
proteins crucial to the virus's life cycle (Morrissey et al., 2008). 
Extensive literature review led us to identify the envelope 
glycoprotein (UniProt ID: P35253) as a pivotal target. The precise 
3D structure of this glycoprotein was subsequently determined 
using the sophisticated I-TASSER computational tool. This 
structural insight underpins the subsequent stages of drug 
discovery, allowing for precise and efficient targeting of potential 
inhibitors (Yang et al., 2015).  
One of the pivotal advantages of drug repurposing lies in the wealth 
of information available for FDA-approved drugs. These drugs come 
with established safety profiles, pharmacokinetics, and toxicity data, 
all of which expedite the transition to clinical trials (Trott and Olson, 
2010; Dallakyan and Olson, 2015). The research at hand exploits 
this treasure trove by systematically screening the FDA-approved 
drug database, identifying compounds with the potential to inhibit 
Marburg Virus. This in silico screening process is meticulously 
executed using AutoDock Vina, a robust molecular docking tool, and 
Pyrx (Bowers et al., 2006; Iqbal et al., 2023). 
To further refine the selection of potential inhibitors, we conduct 
rigorous validation of compound-target protein binding 
interactions using BIOVIA Discovery Studio (Qi et al., 2015). This 
step is pivotal in ensuring that the chosen compounds exhibit a high 
affinity for the target protein while minimizing the risk of off-target 
effects. This meticulous validation process significantly enhances 
the likelihood of identifying drugs with both potency and specificity 
against Marburg Virus (Clark et al., 2012; Anohar et al., 2023). 
Subsequently, we employ Desmond's Molecular Dynamics 
Simulation (MD simulation) to assess the stability and dynamics of 
protein-inhibitor complexes within a physiologically relevant 
environment (Shaw et al., 2014). These simulations offer invaluable 

insights into the conformational changes and interactions occurring 
over time, providing a comprehensive view of the inhibitory 
potential of the selected compounds (Callahan et al., 2017). 
The research findings have unveiled two FDA-approved drugs, 
ZINC000012503187 and ZINC000096006020, as promising 
inhibitors capable of curtailing the action of Marburg. These 
compounds not only demonstrate heightened efficacy but also 
promise fewer side effects, rendering them compelling candidates 
for further preclinical and clinical investigations. This discovery 
constitutes a significant contribution to the scientific community, 
kindling optimism in the ongoing battle against Marburg Virus. In 
this era marked by rapid technological advancements and 
interdisciplinary collaborations, the amalgamation of compu-
tational biology, bioinformatics, and molecular dynamics 
simulations for the repurposing of existing drugs represents an 
avenue brimming with potential. The outcomes of this research 
underscore the promise of expedited drug development and kindle 
hope for the timely creation of effective treatments against Marburg 
Virus, thereby bolstering global public health (Kortepeter et al., 
2020; Abir et al., 2022). 
OBJECTIVES: The objective of the study is to identify lead drug 
candidates to treat diseases caused by Marburg virus by exploring 

FDA drugs using bioinformatics approaches. 
MATERIALS AND METHODS: Target protein sequence retrieval 
and three-dimensional structure prediction: The 3D structure of 
targeted proteins was not present in RCSB PDB. Protein Data Bank 
provide 3D structural data and related information for 
macromolecules such as proteins, DNA, and RNA via web based 
information centre and a data archive that can be downloaded 
(Berman et al., 2000). We retrieve sequence of target protein from 
UniProt (ID: P35253). After that we submit it sequence to the I-
TASSER server to predict its three dimensional structure (Yang et 
al., 2015).  
Protein optimization, minimization and binding site 
prediction: For loop refinement, we used MODELLER, while Swiss 
PDB Viewer and RAMPAGE were used for protein crystal structure 
optimization and minimization. Additionally, RAMPAGE included a 
Ramachandran Plot, which demonstrated the distribution of 
residues in the preferred, permitted, and outlier areas and 
demonstrated the lack of any protein conflicts. Using the CASTp 
(Computed Atlas of Surface Topography of Proteins) database, we 
were able to estimate the binding sites for the protein target. The 
most recent version, CASTp 3.0, provides a trustworthy and 
thorough evaluation of protein topography, precisely detecting and 
measuring binding sites (Guex and Peitsch, 1997; Ho and Brasseur, 
2005; Eswar et al., 2006; Tian et al., 2018).  
The FDA drugs library preparation and molecular docking: A 
library of 1615 chemicals drawn from ZINC database-available, FDA-
approved medications was created. These substances were located in 
the SD File format, and PyRx was then used to import them for docking 
investigations. We performed docking simulations using AutoDock 
Vina between these substances and their corresponding receptors to 
examine their binding affinities and protein-ligand interactions. PyMOL 
was used to create complex receptor and ligand files, while BIOVIA 
Discovery Studio was used to investigate two-dimensional interactions 
(Mura et al., 2010; Trott and Olson, 2010; Dallakyan and Olson, 2015; 
Irwin et al., 2020; Systèmes, 2022). 
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Molecular dynamics simulation: We ran molecular dynamics 
simulations lasting 100 nanoseconds using the Desmond program 
from Schrödinger LLC. We first performed protein-ligand docking as 
an essential first step to build the static representation of the 
molecule's binding site within the target's active site before starting 
the molecular dynamics modeling (MD). To put it simply, MD models 
simulate atomic motions across time and let us forecast the ligand-
binding state in a physiological setting (Bowers, 2006; Ferreira et 
al., 2015; Hildebrand et al., 2019; Rasheed et al., 2021). We 
optimized, reduced, and addressed missing residues in the ligand-
receptor combination as well as the system built using the System 
Builder tool utilizing Maestro's Protein Preparation Wizard. We 
used the TIP3P (Intermolecular Interaction Potential 3 Points 
Transferable) fluid model with a temperature of 310 K, a pressure 
of 1 atm, and the OPLS_2005 force field to recreate physiological 
circumstances. The models were neutralized by adding the proper 
ions, and 0.15 M sodium chloride was added to mimic physiological 
conditions. The models were relaxed before modeling, and 100 ps-
long images were taken on a regular basis. We performed principal 
component analysis (PCA) and dynamic cross-correlation matrix 
(DCCM) calculations using the R 'Bio3D' package for advanced 
studies (Shivakumar et al., 2010; Grant et al., 2021). 
RESULTS AND DISCUSSION: The 3D structure of receptor was 
obtained by utilizing I-TASSER. The protein has 681 residues with 
74376.19 molecular weight. Its theoretical isoelectric point is 5.88.  

 
Figure 1: (A) I-TASSER was used to create the protein's 3D structure 
as well as its anticipated active site (B). 
This structure's Ramachandran plot indicates various areas of the 
protein's shape. Following loop optimization, minimization, and 
concomitant Ramachandran plot analysis, figure (1B) showed the 
protein structure. About 90% of the observations were positive, 
giving the structure a satisfactory overall quality score. All residues 
are pictured as circles in the story, but proline and glycine are shown 
as squares and triangles, respectively. 'Favoured' regions are 
marked in orange, 'allowed' regions in yellow, and 'disallowed' 
regions in white. From the ZINC database, we created a chemical 
library with 1615 different compounds. Docking simulations of 
these ZINC compounds was performed with target protein using 
PyRx with AutoDock Vina. The top 5 compounds identified by this 
docking are listed according to their binding affinities in table 1. Two 
compounds, ZINC000012503187 and ZINC000096006020, emer-
ged as the most active among all evaluated compounds for our 
protein target as a result of this lead discovery. The most active 
compound's 2D interactions were shown in figure 2. Tables 1 
provide the specific features of these top compounds. Then, we ran 
molecular dynamics (MD) simulations for 100 nanoseconds of the 
protein targets in association with these interesting compounds, 
and we analyzed the simulation paths thereafter. The investigation 
of the MD trajectory included a number of data points, including 
protein-ligand interactions, RMSD, and RMSF. 
ZINC000096006020's Root Mean Square Deviation (RMSD) of the 
carbon alpha atoms are displayed versus time. The right Y-axis 
showed how ligand RMSD changes over time, whereas the left Y-axis 
showed how protein RMSD varies with time. (Ligand RMSD is 
depicted in light pink, whereas protein RMSD is shown in dark pink.) 
B) RMSD of carbon alpha atoms of protein with ligand 
(ZINC000012503187) over time. Left Y-axis displays the variation 
of protein RMSD, and right Y-axis demonstrates the variation of 
ligand RMSD over time. (Dark pink colour showed protein RMSD 
and Light pink color showed ligand RMSD). 

ZINC ID Binding Affinity 
(kcal/mol) 

Mwt LogP Molecular 
Formula 

ZINC0000
96006020 

-11.5 853.91
8 

3.736 C47H51NO1
4 

ZINC0000
12503187 

-11.4 498.58
6 

6.507 C32H26N4O
2 

ZINC0000
52955754 

-11.1 581.67
3 

1.991 C33H35N5O
5 

ZINC0000
04099008 

-10.6 656.66
2 

2.753 C32H32O13
S 

ZINC0000
03932831 

-10.5 528.53
7 

6.576 C27H30F6N
2O2 

Table 1:  Displaying the top chemicals' binding affinities 

 
Figure 2: Interactions of ZINC000096006020 (A) and 
ZINC000012503187 (B) with protein target showing interacting 
residues and type of interactions with their distances. 

 
Figure 3: A) The target proteins' and the ligand 
ZINC000096006020's Root Mean Square Deviation (RMSD) of the 
carbon alpha atoms are displayed versus time. The right Y-axis 
showed how ligand RMSD changes over time, whereas the left Y-axis 
showed how protein RMSD varies with time. B) RMSD of carbon 
alpha atoms of protein with ligand (ZINC000012503187) over time. 
(Ligand RMSD is depicted in light pink, whereas protein RMSD is 
shown in dark pink.)  
Figure (3A) confirmed how the RMSD values of ligand-bound 
proteins' carbon alpha atoms have evolved over time. The protein 
molecule in the system (ZINC000096006020-protein complex) 
achieved stability at 25 ns, in accordance to the RMSD plot. 
afterwards, RMSD values vary within 2 Angstrom throughout the 
simulation duration, which is perfectly okay for predicted proteins. 
Throughout the trial, the structure looked to be steady for the most 

mailto:Alzahraniaar@bu.edu.sa
https://www.sciplatform.com/index.php/wjb/article/view/1492


Volume Number 10 ‖ Issue Number 1 ‖ Year 2025 ‖ Page 45 ‖ * Corresponding Author: alzahraniaar@bu.edu.sa‖ 
 

 
 
 

Online Available at: https://www.sciplatform.com/index.php/wjb/article/view/1497                                   ‖DOI: https://doi.org/10.33865/wjb.10.1.1497 

part. After reaching balance, the ligand remained constant 
throughout the experiment. In a few cases, the RMSD numbers 
varied dramatically. This could be explained by a binding state 
switch. After reaching balance, the ligand RMSD remained steady for 
up to 100 ns.  
Figure (3B) depicts how the RMSD values of ligand-bound proteins' 
carbon alpha atoms have evolved over time. The proteins included 
in the structure (ZINC000012503187-protein complex) achieved 
stability 20 ns after the simulation began, according to the RMSD 
curve. Following that, the RMSD values varied within 2.0 Angstrom 
for the sample duration of 100 ns, after which there was a small rise 
in RMSD. Protein RMSD structure is barely increasing during 
simulation time, resulting in minimal system variance and stability. 
It then became steady again. The ligand reached equilibrium after 
10 ns and stayed stable throughout the experiment. The ligand 
RMSD remained steady throughout the experiment. 

 
Figure 4:  Plotting the principal component analysis eigenvalues 
versus the variance percentage. A) The sections of the 
ZINC000096006020-protein complex with the greatest diversity 
are shown throughout three different segments. For PC1, PC2, and 
PC3, the cumulative variances are 44.41%, 29.99%, and 4.73%, 
respectively. B) Variations in PC1, PC2, and PC3 in the 
ZINC000012503187-protein complex result in cumulative 
variances of 33.39%, 19.68%, and 17.05%, respectively. 
The sections of the ZINC000096006020-protein complex with the 
greatest diversity are shown throughout three different segments. 
For PC1, PC2, and PC3, the cumulative variances are 44.41%, 
29.99%, and 4.73%, respectively. B) Variations in PC1, PC2, and PC3 
in the ZINC000012503187-protein complex result in cumulative 
variances of 33.39%, 19.68%, and 17.05%, respectively. 
The findings in current investigation, protein dynamics were 
evaluated using Principal Component Analysis (PCA). With the use 
of this analytical method, we were able to track collective trajectory 
movements throughout the Molecular Dynamics (MD) simulations, 
which revealed important information. For the first 20 modes of 
motion, Figure 4 showed a graph with the eigenvalues (protein) 
plotted against the eigenvector index (eigenmode) (David and 
Jacobs, 2014). The variations in hyperspace eigenvectors, which 
control the overall mobility of the proteins throughout simulations, 
are captured by these eigenvalues. Notably, compared to the 
remaining eigenvectors with lower eigenvalues, the top five 
eigenvectors in our systems had dominating movements, which 
were characterized by greater eigenvalues ranging from 44.4% to 

89.2% and 33.4% to 83.7%. For both the ZINC000096006020-
protein and ZINC000012503187-protein complexes, the first three 
Principal Components (PC1, PC2, and PC3) were displayed in Figure 
4 and accounted for more than 50% of the observed changes. 
Particularly, PC1 clusters showed the largest variability at 44.4% 
and 33.3%, followed by PC2 at 29.9% and 19.6%, and PC3 at 4.7% 
and 17.0%, respectively. Compared to PC1 and PC2, PC3 has less 
variability and a more compact structure, which suggests that the 
interaction between the protein and ligand is more stable. All of the 
groups in the PC subspace's conformational changes were classified, 
with blue denoting the most mobility, white denoting moderate 
mobility, and red denoting less flexibility. 

 
Figure 5: Residue wise RMSF of protein complexed with ligand (A: 
ZINC000096006020-protein, B: ZINC000012503187-protein). 
The measurements of the protein-ligand complexes' Root Mean 
Square Fluctuation (RMSF) were shown in figure 5. The loop, N-
terminal, and C-terminal portions of the proteins are represented by 
the top peaks in figure 5 according to our analysis of the Molecular 
Dynamics (MD) simulations. Lower RMSF values found for residues 
close to the binding site suggest a secure bond between the ligand 
and protein. 
We discovered helices and strands as secondary structural elements 
(SSEs) throughout the modelling procedure. The distribution of 
these secondary structural elements among residues during the 
course of the simulation is shown in the graph below. Alpha helices 
and beta strands were discovered to make up 9.47% and 2.13%, 
respectively, of the ZINC000096006020-protein complex, giving it a 
total secondary structural component fraction of 11.60%. Similar 
percentages of helices and strands were 8.47% and 3.77% 
respectively in the ZINC000012503187-protein complex, which 
added up to a total secondary structural component percentage of 
12.26%. 

 
Figure 6: Protein Secondary Structure elements i.e., helix and 
strands residue wise distribution all over the protein arrangements 
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complexes with the ligand molecules. Red columns represent alpha 
helices while blue columns show beta-strands (A: 
ZINC000096006020-protein, B: ZINC000012503187-protein). 
Figure 6 demonstrated that hydrogen bonds are the most important 
receptor-ligand interactions identified by MD. ASN_18, ILE_21, 
GLU_507, THR_566, and THR_577 are the most significant hydrogen 
bonding sites for the ZINC000096006020-protein complex. As 
Hydrogen bonds for ZINC000012503187-protein, the most 
significant are ILE_21, ASP_469, and THR_578. During the 
experiment, a protein with a ligand was detected. The histogram 
depicts the overall number of protein-ligand interactions/contacts 
(i.e., hydrogen bonds, ionic, hydrophobic, and water bridges) over 
time. In terms of RMSD stability, PCA, DCCM, and number of contacts 
throughout the simulation, ZINC000096006020 drug demonstrated 
greater stability with protein target than ZINC000012503187 drug. 

 
Figure 7. Protein ligand contacts throughout the time of simulation. 
(A: ZINC000096006020-protein, B: ZINC000012503187-protein) 
CONCLUSION: Irrespective of the method used, there is critical co-
existence of underweight and obesity in children living in the rural 
low socioeconomic population of North-West Pakistan. The current 
study hypothesize that cultural tendencies apart from other factors 
were contributing to the higher prevalence and critical co-existence 
of underweight and obesity particularly in the girls. The disparity in 
our results, between CDC and IOTF cut-offs in comparison to other 
populations, suggest the influence of different socioeconomics, 
cultural and genetic factors. 
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