

ISSN (Online) = 2522-6754

ISSN (Print) = 2522-6746

WORLD JOURNAL OF BIOLOGY AND BIOTECHNOLOGY

Research Manuscript

www.scipalform.com

Peer review

Detection of virulence associated gene in *Brucella abortus* from blood samples of cows in District Swat of Khyber Pakhtunkhwa, Pakistan

^a Wajid Khan*, ^a Noman Khan, ^a Fawad Khan, ^a Nasirullah, ^c Dawood Ghafoor, ^a Muhammad Nazir Uddin, ^a Shahab Ahmad Khan, ^b Ihsan Uddin, ^a Nabila Qayum

^a Centre for Biotechnology and Microbiology University of Swat, Pakistan,

^b Veterinary Research and Diseases Investigation Centre Balogram, Swat, Pakistan,

^c Veterinary Preclinical Sciences, College of Science and Engineering (CSE), James Cook University, Townsville, QLD 4811, Australia.

Contribution

All authors contributed to the study as follows: **W. Khan** (conceptualization and supervision); **N. Khan** (methodology and original draft preparation); **Nasirullah** (methodology and formal analysis); **F. Khan** (methodology and formal analysis); **D. Ghafoor** (formal analysis and investigation); **M.N. Uddin** (original draft preparation and supervision); **S.A. Khan** (original draft preparation); **I. Uddin** (resources and review and editing); and **N. Qayum** (review and editing).

Brucella abortus is a zoonotic pathogen causing brucellosis in livestocks and human, a disease with significant economic and public health concern. The present study investigated the molecular detection of *Brucella* species, and the frequency of virulent genes (vir B and ure) in the *Brucella* species circulating in livestock of the district Swat Khyber Pakhtunkhwa, Pakistan. Blood samples were collected from suspected cases of brucellosis in cows of the two tehsils of district Swat. The genomic DNA was extracted from a blood sample and subjected to genus and species-specific primer of *Brucella* through polymerase chain reaction (PCR) assay. The *Brucella* species DNA was then screened for the presence of virulent genes. The PCR using specific primers confirmed genus *Brucella*, species *abortus*, and detected virulence-associated gene *virB* and *ure* operon in *B. abortus* in the current location. Out of the total tested samples, 22.8% were positive for the *Brucella* genus and 68.7% for *B. abortus*, with high percentage in Tehsil Charbagh. The *virB* virulent gene and *ure* gene frequency were 72.7% and 40% respectively. The high frequency of virulent genes in *B. abortus* indicated a circulation of virulent strains of *B. abortus* in cows.

Keywords: *Ptyas mucosa*, Lakki Marwat, Morphological diagnosis, Taxonomic differentiation, Habitat degradation, Conservation

INTRODUCTION: Brucellosis is a zoonotic disease caused by the members of the genus *Brucella* and transmitted from the infected animals to humans by aerosol inhalation, ingestion of contaminated food products, and direct contact with an infected animal or persons (Corbel, 2006; Chan and Surendran-Nair, 2025). Taxonomically, *Brucella* is classified as α -Proteobacteria and subdivided into *B. abortus*, *B. melitensis*, *B. canis*, *B. suis*, *B. ovis* and *B. neotomae* (Alton *et al.*, 1988; Rahimoon *et al.*, 2024). The development of new species and the expansion of host ranges can result from *Brucella* species' constant genetic and phenotypic adaptation to changing environmental, agricultural, and social factors. This has important ramifications for both human and animal health. (Godfroid *et al.*, 2005; Al Dahouk *et al.*, 2017). Among the reported species of *Brucella*, *B. suis* and *B. abortus* are very important zoonotic agents after *B. melitensis*, the most virulent and the most prevalent worldwide. *B. abortus* is the major cause of late gestation abortion in cows and makes the milk contaminated (Barkallah *et al.*, 2014). The pathogen follows a different strategy to enter into host cell and then overcome the host immune system for propagation (Martirosyan *et al.*, 2011). In livestock, *Brucella abortus* mainly reproduces in the genital-reproductive organs, such as the mammary glands and supra-mammary lymph nodes resulting in milk contamination. (Refaai, 2003; González-Espinoza *et al.*, 2021). Many *Brucella* species' reported unique genetic traits which reflects their ongoing diversification and evolution, which may have an impact on their pathogenicity, host range, and environmental fitness (Poester *et al.*, 2013; Banai, 2025). Therefore, an outbreak of brucellosis may be expected in the future. Different virulent factors of *Brucella* spp. are responsible for the infection. *VirB* proteins forming the type IV secretion system (T4SS) are one of the most virulence factors of *Brucella* that have a role in intracellular replication (Lapaque *et al.*, 2006; Roop *et al.*, 2021). Another virulence factor of *Brucella* is virulence factor A (bvFA), which is a small 11kDa protein of periplasm and might have a role in establishing an intracellular niche, but its specific virulence role is still unrevealed (Lavigne *et al.*, 2005; Głowacka *et al.*, 2018). Besides *virB* and *bvFA*, urease is another important virulence factor of *Brucella* encoded by *ure* genes. The number and combination of different virulent factors mediated the pathogenesis of species of *Brucella* (López-Santiago *et al.*, 2019). Thus, the identification and characterization of these virulent factors play a vital role in the management and control of the outbreaks.

OBJECTIVES: The current study investigates the molecular diagnoses and frequency of virulent genes (*virB* and *ure* gene) of *B. abortus* affecting the local population of cows.

MATERIALS AND METHODS: A standardized procedure was used to collect blood samples from the cows suspected of having

brucellosis (Zulfiqar *et al.*, 2012). A total of seventy samples were collected (n=70) from the two tehsils (Charbagh and Barikot) of district Swat, with 35 samples from each tehsil. About 3-5mL of blood was collected in ethylenediaminetetraacetic acid (EDTA) tubes from the jugular vein of cows via disposable syringes. The blood samples were brought to the laboratory of the Centre for Biotechnology and Microbiology, University of Swat, and properly labeled. The blood samples were processed for serum separation and handled for further analysis following the standardized procedure of Oddoze *et al.* (2012). The Rose Bengal plate test and Standard agglutination test were performed and the methodology used by Ebied *et al.* (2020). All samples tested positive by RBPT and SPAT were further confirmed by PCR. The Genomic DNA extraction was performed via Thermo Scientific Gene JET Genomic DNA Purification Kit (Cat#FSB2147) following the manufacturer procedure with no modification. The concentration and the purity of DNA were measured by a NanoDrop™ spectrophotometer (NanoDrop 2000 Thermo Scientific). The calculated value of ~1.8 from the absorption ratio (A260nm/280nm) is considered the purity of the sample.

Four different PCR assays were used in the current study. The first and second assays identified the genus *Brucella* and species *abortus*, previously described by Garshasbi *et al.* (2014). The third and fourth assays investigated the virulent genes (*vir B* and *ure*) in the *B. abortus* (Lavigne *et al.*, 2005). Briefly, the total volume of the 25 μ L PCR reaction was prepared by the addition of 3 μ L 5x FIREPol® Master Max, 2 μ L template DNA (different for each reaction), 0.5 μ L forward and 0.5 μ L of the reverse primer (different for each assay) was added to 19 μ L of double distilled water. The oligonucleotide primers (table 1) used in the current study were supplied by Macrogen (Korea). PCR assay was accomplished in the thermocycler (Bio-Rad T100) using the following parameters: primary denaturation at 94°C for 4 min, 40 cycles of application with denaturation at 94°C for 30 sec, 30 sec of annealing at 64°C, 65°C and 54°C for Bcsp31, Is711 and *virB* respectively, and primer extension for 1 min., and 10 min. a final extension of incomplete synthesized DNA was performed at 72°C. The amplified PCR products were separated on 1% gel containing 2 μ L Ethidium bromide, with the help of electrophoresis performed in 1X TBE buffer. The gel was visualized under UV light for the determination of the amplified product. The photos were then saved on the computer.

RESULT AND DISCUSSION: Brucellosis is one of the most widespread zoonotic bacterial diseases, which represents a serious threat to humans and animals and can also cause high economic losses (Maadi *et al.*, 2011). Annually, 500,000 cases of brucellosis occur in humans and animals (Pappas *et al.*, 2006).

Target	Primer sequence(5'-3')	Amplified segment	References
<i>Bcsp31</i>	B4: TGGCTCGGTTGCCAATATCAA B5: CGCGCTTGCCTTCAGGTCTG	223 bp	(Garshasbi <i>et al.</i> , 2014)
<i>Is711, B. abortus</i>	F: TGCCGATCACTTAAGGGCCTTCAT R: GACGAACGGAATTTCATCC	498 bp	(Garshasbi <i>et al.</i> , 2014)
<i>virB</i>	F: CGCTGATCTATAATTAAAGGCTA R: TGCGACTGCCTCCTATCGTC	881 bp	(Lavigne <i>et al.</i> , 2015)
<i>ure</i>	F: GCTTGCCCTTGAATTCCCTTG R: ATCTGCCAATTGCCGGACTCTAT	1282 bp	Derakhshandeh <i>et al.</i> , 2013

Table 1: Oligonucleotide primers used in the PCR assay.

Large, organized dairy farms and large herds are more vulnerable than small holdings because of management procedures and herd size. In Pakistan, organized dairy farms show a substantial prevalence of *B. abortus*, and the incidence is frequently higher in larger herds and disorganized farms (Shafee *et al.*, 2011; Arif *et al.*, 2019). Different molecular and serological methods are used for the detection of *Brucella* spp. However, the preferred diagnostic method for brucellosis detection is PCR assays, which offer quick, sensitive, and specific detection of *Brucella* spp., surpassing other diagnostic methods such as culture, immunohistochemistry, and traditional serological tests for direct diagnosis of infection in animals and clinical samples (Asif *et al.*, 2009; Pereira *et al.*, 2023). In the current study, the presence of *B. abortus* and the virulence genes were investigated via PCR assay (table 2). The total samples were first

tested for the *Brucella* genus through PCR using a specific primer targeted *Bcsp31*. Out of the total (70) tested samples, 22.8% were positive with high percentage in Charbagh and the remaining 77.2% samples were negative for the *Brucella* genus. The positive sample appeared on the gel with an amplicon size of 223 bp (figure 1).

Target genes	Results	
	Positive (%)	Negative (%)
<i>Bcsp31, Brucella</i>	(22.8%)	(77.2%)
<i>IS711, B. abortus</i>	(68.7%)	(31.3%)
<i>virB, T4SS</i>	(72.7%)	(27.3%)
<i>ure</i>	(40%)	(60%)

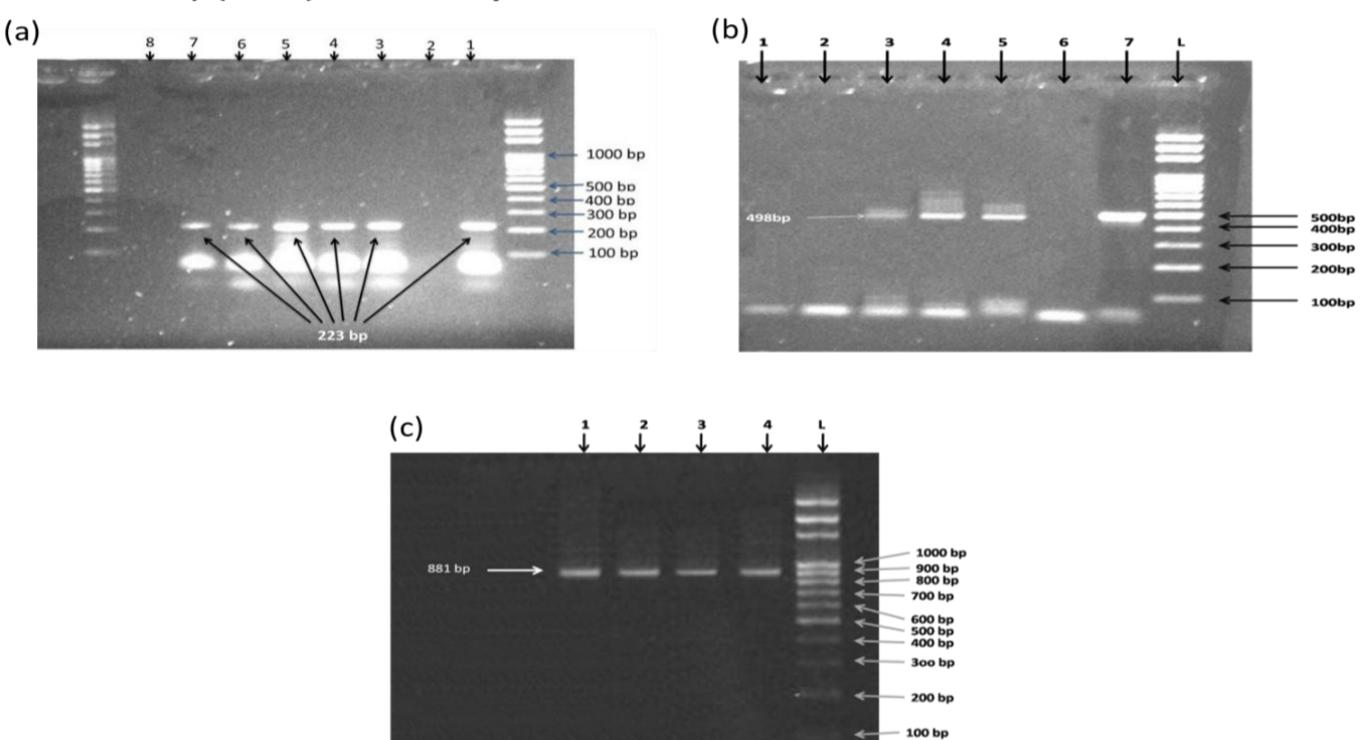

Table 2: Detection of *B. abortus* and their virulence-associated genes (*virB* and *ure*).

Figure 1: (a) Visualization of PCR amplified product on an agarose gel. Lanes: both sides, ladder (100bp); Lane 1, Positive; Lane 2, Negative control; Lane 3-7, samples. All the samples (3-7) showed positive PCR products for the *Bcsp31* gene, with an amplicon size of 223 bp, (b) Visualization of DNA amplified fragments by gel electrophoresis. Lanes: L, Ladder (100bp); 7, positive control; 6, negative control; 1-5, samples. 1 and 2 show negative results while the remaining 3, 4 and 5 show a positive result for *IS711* with an amplicon size of 498 bp, (c) Visualization of PCR amplified product on an agarose gel. Lanes: L, ladder (100bp); 1-4, samples. All the samples (1-4) showed positive results for the *virB* gene with an amplicon size.

Furthermore, 68.7% of the tested samples were identified as positive for *B. abortus*, with an amplicon size of 498 bp (figure 1b). (Garshasbi *et al.*, 2014) reported 73.8% for *B. abortus* showing results near to the current study. The virulence and pathogenicity of *Brucellae* species are mostly because of their astonishing ability to survive in unfavorable environmental situations encountered within the cell. *Brucella* has many virulent associated factors (Gándara *et al.*, 2001). These virulent factors are involved in pathogenesis and other important activities. Among the reported virulent factors, T4SS is one of the central virulence traits essential for the intracellular replication of the bacteria (Delrue *et al.*, 2004). In addition to T4SS, *Brucella*'s lipopolysaccharide (LPS) is a virulence factor that avoids substantial host immune response due to its distinct structure. The T4SS gene is one of several virulence genes that are regulated by the BvrR/BvrS two-component regulatory system. In order to infect and survive inside host cells, *Brucella* depends on these specialized systems rather than traditional virulence factors like exotoxins, capsules, or fimbriae (Głowacka *et al.*, 2018). The findings of the study revealed that 72.7% of the *B. abortus* positive samples were positive for *virB* (figure 1c). A different percentage of *virB* gene has been reported in the genome of *Brucella* spp, according to the previous studies

(Ramadan *et al.*, 2019). The other important virulence factor involved in the pathogenicity of *Brucella* spp. is the urease enzyme coded by *ure* operon (Sangari *et al.*, 2007; Lin *et al.*, 2022). The urease hydrolyzes the urea and results from the formation of ammonium which helps the bacteria to survive in an acidic environment (Bandara *et al.*, 2007; Kornspan *et al.*, 2020).

The findings of the study revealed the frequency of *ure* gene of 40% in *B. abortus* which showed disagreement with the finding of Mirnejad *et al.* (2017). This difference in the results might be attributed to the number of tested samples, variation in the source, and prevalent strains in the under-investigated areas.

CONCLUSION: A high percentage of *B. abortus* (68.7%) was detected in the tested samples of cows for brucellosis. The prevalence of *virB* virulent gene and *ure* genes were 72.7% and 40% respectively highlighting the potential virulence of the bacterium. Furthermore, it is recommended that public health authorities and veterinary officials set a national campaign for awareness and control of this hazard.

CONFLICT OF INTEREST: All the authors declared no conflict of interest.

LIFE SCIENCE REPORTING: In current research article no life science threat was reported

ETHICAL RESPONSIBILITY: This is original research, and it is not submitted in whole or in parts to another journal for publication purpose.

INFORMED CONSENT: The author(s) have reviewed the entire manuscript and approved the final version before submission.

REFERENCES: Al Dahouk, S., S. Köhler, A. Occhialini, M. P. Jiménez de Bagüés, J. A. Hammerl, T. Eisenberg, G. Vergnaud, A. Cloeckaert, M. S. Zygmunt, A. M. Whatmore, F. Melzer, K. P. Drees, J. T. Foster, A. R. Wattam and H. C. Scholz, 2017. *Brucella* spp. Of amphibians comprise genetically diverse motile strains competent for replication in macrophages and survival in mammalian hosts. *Scientific reports*, 7(1): 44420.

Alton, G., L. M. Jones, R. Angus and J. Verger, 1988. Serological methods. *Techniques for the brucellosis laboratory*: 63-136.

Arif, S., P. C. Thomson, M. Hernandez-Jover, D. M. McGill, H. M. Warriach, K. Hayat and J. Heller, 2019. Bovine brucellosis in pakistan; an analysis of engagement with risk factors in smallholder farmer settings. *Veterinary medicine and science*, 5(3): 390-401.

Asif, M., A. Awan, M. Babar, A. Ali, S. Firyal and Q. Khan, 2009. Development of genetic marker for molecular detection of *brucella abortus*. *Pakistan Journal of zoology, Suppl. Ser*, 9: 267-271.

Banai, M., 2025. Investigation of genomic island 2 deciphers the evolution of a genus *brucella*. *Scientific reports*, 15(1): 19877.

Bandara, A. B., A. Contreras, A. Contreras-Rodriguez, A. M. Martins, V. Dobrean, S. Poff-Reichow, P. Rajasekaran, N. Sriranganathan, G. G. Schurig and S. M. Boyle, 2007. *Brucella suis* urease encoded by ure 1 but not ure 2 is necessary for intestinal infection of balb/c mice. *BMC microbiology*, 7(1): 57.

Barkallah, M., Y. Gharbi, A. B. Hassena, A. B. Slima, Z. Mallek, M. Gautier, G. Greub, R. Gdoura and I. Fendri, 2014. Survey of infectious etiologies of bovine abortion during mid-to late gestation in dairy herds. *PLoS one*, 9(3): e91549.

Chan, O. S. K. and M. Surendran-Nair, 2025. History of zoonotic viruses and bacteria and diagnostics. *Epizootics-Outbreaks of Animal Disease: Outbreaks of animal disease*: 9. **????**

Corbel, M. J., 2006. Brucellosis in humans and animals. *World Health Organization*. **???**

Delrue, R.-M., P. Lestrate, A. Tibor, J.-J. Letesson and X. De Bolle, 2004. *Brucella* pathogenesis, genes identified from random large-scale screens. *FEMS microbiology letters*, 231(1): 1-12.

Ebid, M., A. El Mola and F. Salib, 2020. Seroprevalence of brucellosis in sheep and goats in the arabian gulf region. *Veterinary world*, 13(8): 1495.

Gándara, B. n., A. L. p. Merino, M. A. Rogel and E. Martínez-Romero, 2001. Limited genetic diversity of *brucella* spp. *Journal of clinical microbiology*, 39(1): 235-240.

Garshasbi, M., A. Ramazani, R. Sorouri, S. Javani and S. Moradi, 2014. Molecular detection of *brucella* species in patients suspicious of *Brucellosis* from Zanjan, Iran. *Brazilian journal of microbiology*, 45: 533-538.

Głowacka, P., D. Żakowska, K. Naylor, M. Niemcewicz and A. Bielawska-Drózd, 2018. *Brucella* - virulence factors, pathogenesis and treatment. *Polish journal of microbiology*, 67(2): 151-161.

Godfroid, J., A. Cloeckaert, J.-P. Liautard, S. Kohler, D. Fretin, K. Walravens, B. Garin-Bastuji and J.-J. Letesson, 2005. From the discovery of the malta fever's agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. *Veterinary research*, 36(3): 313-326.

González-Espinoza, G., V. Arce-Gorvel, S. Mément and J. P. Gorvel, 2021. *Brucella*: Reservoirs and niches in animals and humans. *Pathogens*, 10(2). **????**

Kornspan, D., T. Zahavi and M. Salmon-Divon, 2020. The acidic stress response of the intracellular pathogen *brucella* melitensis: New insights from a comparative, genome-wide transcriptome analysis. *Genes (Basel)*, 11(9). **???**

Lapague, N., F. Forquet, C. De Chastellier, Z. Mishal, G. Jolly, E. Moreno, I. Moriyon, J. E. Heuser, H. T. He and J. P. Gorvel, 2006. Characterization of *Brucella abortus* lipopolysaccharide

macrodomains as mega rafts. *Cellular microbiology*, 8(2): 197-206.

Lavigne, J.-P., G. Patey, F. J. Sangari, G. Bourg, M. Ramuz, D. O'Callaghan and S. Michaux-Charachon, 2005. Identification of a new virulence factor, bvfa, in *brucella suis*. *Infection and immunity*, 73(9): 5524-5529.

Lin, W.-F., R.-Y. Hu, H.-Y. Chang, F.-Y. Lin, C.-H. Kuo, L.-H. Su and H.-L. Peng, 2022. The role of urease in the acid stress response and fimbriae expression in *klebsiella pneumoniae* cg43. *Journal of Microbiology, immunology and infection*, 55(4): 620-633.

López-Santiago, R., A. B. Sánchez-Argáez, L. G. De Alba-Núñez, S. L. Baltierra-Uribe and M. C. Moreno-Lafont, 2019. Immune response to *mucosal brucella* infection. *Frontiers in immunology*, 10 - 2019 **????**

Maadi, H., M. Moharamnejad and M. Hagh, 2011. Prevalence of brucellosis in cattle in urmia, Irán. **????**

Martirosyan, A., E. Moreno and J. P. Gorvel, 2011. An evolutionary strategy for a stealthy intracellular *brucella* pathogen. *Immunological reviews*, 240(1): 211-234.

Mirnejad, R., F. M. Jazi, S. Mostafaei and M. Sedighi, 2017. Molecular investigation of virulence factors of *brucella melitensis* and *brucella abortus* strains isolated from clinical and non-clinical samples. *Microbial pathogenesis*, 109: 8-14.

Oddoze, C., E. Lombard and H. Portugal, 2012. Stability study of 81 analytes in human whole blood, in serum and in plasma. *Clinical biochemistry*, 45(6): 464-469.

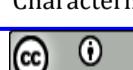
Pappas, G., P. Papadimitriou, N. Akritidis, L. Christou and E. V. Tsianos, 2006. The new global map of human brucellosis. *The lancet infectious diseases*, 6(2): 91-99.

Pereira, C. R., R. C. Neia, S. B. Silva, C. H. D. Williamson, J. D. Gillece, D. O'Callaghan, J. T. Foster, I. R. C. Oliveira, J. S. S. Bueno Filho, A. P. Lage, V. A. C. Azevedo and E. M. S. Dorneles, 2023. Comparison of *brucella abortus* population structure based on genotyping methods with different levels of resolution. *Journal of microbiological methods*, 211: 106772.

Poester, F., L. Samartino and R. Santos, 2013. Pathogenesis and pathobiology of brucellosis in livestock. *Revue scientifique et technique*, 32(1): 105-115.

Rahimoon, M. M., A. H. Mirani, J. K. Sahito, A. L. Bhutto, P. A. Khoso, R. A. Laghari, A. Kaka, M. Aqeel and G. R. Rahimmon, 2024. Brucellosis and its diagnostic techniques in animals: A comprehensive review. *Journal of bioresource management*, 11(3): 15.

Ramadan, E. S., W. S. Mousa, J. A. Gafer, H. T. Elbaz, E. Abdeen and H. Hussien, 2019. Substantial virulence genes among *brucella melitensis* field strains isolated from cattle in egypt. *Pakistan journal of biological sciences*, 22: 239-246.


Refai, M., 2003. Application of biotechnology in the diagnosis and control of brucellosis in the near east region. *World journal of microbiology and biotechnology*, 19(5): 443-449.

Roop, R. M., S. Barton Ian, D. Hopersberger and W. Martin Daniel, 2021. Uncovering the hidden credentials of *brucella* virulence. *Microbiology and molecular biology reviews*, 85(1): 10.1128/mmbr.00021-00019.

Sangari, F. J., A. Seoane, M. a. C. Rodríguez, J. s. Agüero and J. M. García Lobo, 2007. Characterization of the urease operon of *Brucella abortus* and assessment of its role in virulence of the bacterium. *Infection and immunity*, 75(2): 774-780.

Shafee, M., M. Rabbani, A. A. Sheikh, M. d. Ahmad and A. Razzaq, 2011. Prevalence of bovine brucellosis in organized dairy farms, using milk ELISA, in Quetta city, Balochistan, Pakistan. *Veterinary medicine international*, 2011(1): 358950.

Zulfiqar, S., S. Shahnawaz, M. Ali, A. M. Bhutta, S. Iqbal, S. Hayat, S. Qadir, M. Latif, N. Kiran and A. Saeed, 2012. Detection of *babesia bovis* in blood samples and its effect on the hematological and serum biochemical profile in large ruminants from southern punjab. *Asian Pacific journal of tropical biomedicine*, 2(2): 104-108.

Except where otherwise noted, this item's licence is described as **© The Author(s) 2025. Open Access. This item is licensed under a Creative Commons Attribution 4.0 International License**, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the [Creative Commons license](#), and indicate if changes were made. The images or other third party material in this it are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.