
Volume Number 6 ‖ Issue Number 3 ‖ Year 2021 ‖Page Number 11

WORLD JOURNAL OF BIOLOGY AND BIOTECHNOLOGY

Complexity analysis of algorithms: A case study on bioinformatics tools

Victória Cardoso dos Santosa, Gislenne da Silva Moiaa, Mônica Silva de Oliveirae, Jorianne Thyeska Castro Alvesc, Pablo
Henrique Caracciolo Gomes de Sád, *Adonney Allan de Oliveira Verasb

a Faculty of Computer Engineering, Federal University of Pará campus Tucuruí (CAMTUC-UFPA), Pará, Brazil
bFaculty of Computing, Federal University of Pará Castanhal (FACOMP-UFPA), Pará, Brazil

cPará State University (UEPA), Campus Marabá, Pará, Brazil
dFederal Rural University of Amazonia (UFRA), Campus Tomé-Açu, Pará, Brazil

eAmazon Engineering Development Nucleus – (NDAE-UFPA)
Authors’

Contribution
Santos, V. C: write de manuscript and analysis data; G.S. Moia and M. S. Oliveira write the manuscript; J.T.C.
Alves and P.H.C.G. De Sá analysys validate and manuscript revision; A.A.O Veras principal investigator, project
managment, desing project.

*Corresponding Author’s Email Address allanverasce@gmail.com Review Proccess: Double-blind peer review

Received: 21 August 2021 Revised: 17 November 2021 Accepted: 24 December 2021 Published Online: 26 November 2021

Digital Object Identifier (DOI) Number: https://dx.doi.org/10.33865/wjb.006.03.0445
ABSTRACT

The data volume produced by the omic sciences nowadays was driven by the adoption of new generation sequencing
platforms, popularly called NGS (Next Generation Sequencing). Among the analysis performed with this data, we can mention:
mapping, genome assembly, genome annotation, pangenomic analysis, quality control, redundancy removal, among others.
When it comes to redundancy removal analysis, it is worth noting the existence of several tools that perform this task, with
proven accuracy through their scientific publications, but they lack criteria related to algorithmic complexity. Thus, this work
aims to perform an algorithmic complexity analysis in computational tools for removing redundancy of raw reads from the
DNA sequencing process, through empirical analysis. The analysis was performed with sixteen raw reads datasets. The
datasets were processed with the following tools: MarDRe, NGSReadsTreatment, ParDRe, FastUniq, and BioSeqZip, and
analyzed using the R statistical platform, through the GuessCompx package. The results demonstrate that the BioSeqZip and
ParDRe tools present less complexity in this analysis.

Keywords: Time complexity; Computational tools; Empirical analysis.

INTRODUCTION: The adoption of NGS (Next Generation
Sequencing) sequencing technologies has stimulated the
deposit of biological information in public databases such as the
National Center for Biotechnology Information – NCBI
(https://www.ncbi.nlm.nih. gov/). Due to the volume of data
produced by these technologies, new algorithms capable of
performing the most varied analyzes had to be developed
(Chain et al., 2009; Kremer et al., 2017). The best practices for
the development of algorithms advise that the efficiency of the
proposed solution must be observed, and also the solution of
the problem in question, in addition to items such as the
execution time, amount of threads to perform tasks, and the
memory cost. The analysis that makes inferences about the
efficiency of algorithms is called algorithmic complexity
analysis, through which it is possible to determine the
computational effort required to execute a given computational
solution (Cormin et al., 1992). The Big-O notation
asymptotically analyzes the behavior of a given function, where
f(n) is O(g(n)) with n -> ∞ if there are two positive constants c >
0 and n0 > 1, such that f(n) ≤ c * g(n), for n ≥ n0. This notation
is used to determine the speed with which a function tends to
infinity (Goodrich et al., 2014). It is possible to define the
asymptotic behavior of complexity with the observation of the
execution time of an algorithm according to the data input
(Cormin et al., 1992). In the literature, it is possible to observe
that accuracy and memory consumption are used as
parameters to determine the efficiency of an algorithm.
However, the time required to perform the processing is also

deterministic in the analysis of the complexity of algorithms,
because an efficient algorithm, as the input grows towards
infinity, presents the smallest variation in time for execution.
(Levitin, 2012).
OBJECTIVES: This work aims at an empirical algorithmic
complexity analysis, performed in computational tools
developed to remove redundancy in raw reads from the DNA
sequencing process, through the GuessCompx package (Agenis-
Nevers et al., 2021) using as input the processing time of each
tool.
MATERIALS AND METHODS
Tools and data source: The tools selected for this analysis
were MarDRe (Expósito et al., 2017), ParDRe, FastUniq (Xu et
al., 2012), NGS Reads Treatment (Gaia et al., 2019), and
BioSeqZip (Urgese et al., 2020). They were chosen because they
are tools capable of manipulating platform-independent NGS
data and are freely available to the scientific community.
For this analysis were used sixteen genome sequencing
datasets obtained from NCBI, listed in Table 1.
The analysis: To measure the total processing time for each
tool used in this analysis, an inhouse-Script was developed using
the Python programming language version 3.8. The open-
source GuessCompx package was used to empirically estimate
the complexity from the total processing time per tool. To
obtain the estimate of the algorithmic complexity of the data
generated by the tools, the glm function was used
(https://www.rdocumentation.org/packages/stats/versions/3.
6.2/topics/glm), which is present in the platform of statistic R,

ISSN (Online) = 2522-6754 ISSN (Print) = 2522-6746

www.sciplatform.com Research Manuscript

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm

Volume Number 6 ‖ Issue Number 3 ‖ Year 2021 ‖Page Number 12

it consists of a generalized linear model, adjusting the
complexity functions based on time values and the input size, to
return the function that indicates the complexity analyzed in
each model. Through the Big-O notation, it is possible to order
the functions by the increase in the asymptotic growth rate
(Goodrich et al., 2014). In Table 2 are listed, in order, the eight
complexity functions used in this analysis.

Organism SRA
number

Amount
of reads

Escherichia coli O26:H11 str. 11368 ERR351259 5,891,069
E. coli Eco 889 SRR3465539 4,000,000
E. coli Ecol_545 SRR3999078 1,775,561
E. coli Ecol_AZ146 SRR3999096 1,954,201
E. coli O25b:H4-ST131 SRR5194991 7,300,682
Escherichia coli 042 ERR007646 7,055,348
Escherichia coli Ecol_422 SRR3999095 2,811,096
E. coli str. K-12 substr. MG1655 SRR13921546 4,851,790

E. coli O25b:H4-ST131 SRR933487 1,607,156
E. coli O111:H- str. 11128 ERR351258 4,528,090
E. coli O103:H2 str. 12009 ERR351260 3,791,997
E. coli 105_CN 19_B6_M2_C5_P1 SRR6111817 2,927,916
Salmonella enterica 63517 SRR8735180 1,777,597
Kineococcus rhizosphaerae DSM 19711 SRR6479489 2,820,667
K. xinjiangensis DSM 22857 SRR6479482 2,985,511
Arcobacter halophilus SRR1144800 3,516,714

Table 1: Datasets used in redundancy removal. Shows the
organism, SRA number and the number of reads for each
dataset.

Name Description Execution
time

Constant Regardless of the size of the input dataset, the
algorithm will always run at the same time
(Goodrich et al., 2014).

O(1)

Double-
logarithmic

The order that divides the problem twice into
smaller problems, processing at each
interaction, ¼ of the data (Cormin et al., 1992).

O(log log
n)

Logarithm The order that divides the problem into
smaller problems, processing half of the data at
each interaction (Levitin, 2012).

O(log n)

Linear The order in which performance increases
linearly in direct proportion to the size of the
input dataset (Goodrich et al., 2014).

O(n)

Linearithmic
time

The problem is divided into smaller problems,
which are solved independently and then
merged (Goodrich et al., 2014).

O(n log n)

Quadratic Algorithm performance grows proportionally
to the square of the input dataset size
(Goodrich et al., 2014).

O(n²)

Cubic Algorithm performance grows proportionally
to the cube of the input dataset size (Goodrich
et al., 2014).

O(n³)

Quadruple Algorithm performance grows proportionally
to quadruple the size of the input dataset
(Goodrich et al., 2014).

O(n⁴)

Table 2: List of Big-O notation in the analysis.
Workstation: The workstation used to perform the analysis
were PowerEdge T440, Intel Xeon Silver 4214 R de 2.4G, 12C,
64GB RDIMM memory, 2933MT/s.
RESULTS AND DISCUSSION: After processing the datasets with
each tool, the number of reads per dataset and the total
processing time per tool in seconds were generated, as shown
in Table 3. These data were used as inputs to obtain an estimate
of the algorithmic complexity of each tool. Figure 1 below
shows the graph generated right after an initial ordering in an

ascending manner, which shows the behavior of each tool as the
size of the datasets will increase. On the vertical axis, it contains
the time each tool took to remove duplicate reads in each
dataset, and on the horizontal axis, it shows the size of the
datasets.

Figure 1: Figure 1: Dataset processing time for each tool.
Figure 2 shows the result generated from the data obtained
through the GuessCompx package using the glm function,
presenting the best-fitted model referring to the original input
and execution time data of the tools, indicating the time
complexity of each.

Figure 2: Model adjusted with the classification of the
complexity of each tool.

Volume Number 6 ‖ Issue Number 3 ‖ Year 2021 ‖Page Number 13

SRA Number Amount of reads MarDRe NGSReadTreatment ParDRe FastUniq BioSeqZip

ERR351259 5,891,069 122.13933 450.61075 115.84975 32.76499 56.74513
SRR3465539 4,000,000 152.54016 314.03648 195.79587 54.55795 80.24278
SRR3999078 1,775,561 65.32743 133.49737 79.97755 15.81383 19.27481
SRR3999096 1,954,201 70.04805 153.90345 101.78853 17.38272 20.40122
SRR5194991 7,300,682 148.03880 551.19522 139.51281 47.75186 68.86436
ERR007646 7,055,348 127.57795 511.02596 65.19286 30.82049 32.26478

SRR3999095 2,811,096 102.13908 222.11067 148.28935 26.45431 61.35715
SRR13921546 4,851,790 99.08816 286.84546 76.88631 26.19284 32.50419

SRR933487 1,607,156 45.21834 111.25275 23.94190 8.44803 9.36266
ERR351258 4,528,090 95.04159 284.15241 63.02875 24.14208 26.16725
ERR351260 3,791,997 80.04319 280.06446 85.27908 20.72433 22.81125

SRR6111817 2,927,916 65.94035 186.44247 39.58490 14.80441 15.88374
SRR8735180 1,777,597 45.13097 120.34384 24.58334 8.53508 9.62314
SRR6479489 2,820,667 81.12143 216.86710 73.42460 16.62816 20.68559
SRR6479482 2,985,511 88.18347 229.49797 83.23705 19.14120 22.32020
SRR1144800 3,516,714 81.11041 225.18378 51.43773 19.05139 21.18828

Table 3. List of datasets processed by tool.
It can be noted that for the datasets, from the worst to the best
complexity time, that is, from the highest to the lowest
asymptotic growth rate, there is the NGSReadsTreatment tool,
which presents the performance of order O(n log n). Then, the
tools MarDRe and FastUniq, which operated in a similar way on
the results, obtained a growth of order O(log n). Finally,
presenting the best performances in this analysis are the
BioSeqZip and ParDRe tools, which obtained O(log log n)
complexity.
CONCLUSION: In this work, a complexity analysis was
performed among five computational tools, which are used to
remove redundancy in raw reads resulting from the DNA
sequencing process, using input size and time values as
parameters. It is important to emphasize that although the
complexity of algorithms is not a new subject, there is a lack of
materials within the area of computing and mathematics that
address the functions related to the complexity of algorithms.
Based on the results obtained, among the five chosen tools,
BioSeqZip and ParDRe were shown to be more effective in
relation to the datasets used in this analysis, presenting the O
(log log n) order complexity. Therefore, the analysis of
algorithmic complexity in computational tools applied in the
omics sciences is necessary, because, with the constant increase
in the volume of data, they become more complex to be
processed and, the more predictable the tool in terms of cost of
time is, more useful it will be, being able to assist the user, as an
evaluation criterion, in choosing the tool that best corresponds
the needs of your research.
CONFLICT OF INTERESTS: Authors have no conflict of interest
ACKNOWLEDGMENT: Thanks to the Brazilian Research
Council (CNPq) and the Federal University of Pará, this work
received help from PROPESP/UFPA. This work is part of the
research developed by BIOD (Bioinformatics, Omics, and
Development research group - www.biod.ufpa.br). AAOV

thanks to Federal University of Pará (UFPA) and PHCGS thanks
to PVTA341-2020 from Federal Rural University of Amazonia
(UFRA).
REFERENCES: Agenis-Nevers, M., N. D. Bokde, Z. M. Yaseen and

M. K. Shende, 2021. An empirical estimation for time and
memory algorithm complexities: Newly developed r
package. Multimedia tools applications, 80(2): 2997-3015.

Chain, P., D. Grafham, R. Fulton, M. Fitzgerald, J. Hostetler, D.
Muzny, J. Ali, B. Birren, D. Bruce and C. Buhay, 2009.
Genome project standards in a new era of sequencing.
Science, 326(5950): 236-237.

Cormin, T., C. Leiserson and R. Rivest, 1992. Introduction to
algorithms mit press: Cambridge. MA.

Expósito, R. R., J. Veiga, J. González-Domínguez and J. Touriño,
2017. Mardre: Efficient mapreduce-based removal of
duplicate DNA reads in the cloud. Bioinformatics, 33(17):
2762-2764.

Gaia, A. S. C., P. H. C. G. de Sá, M. S. de Oliveira and A. A. de
Oliveira Veras, 2019. Ngsreadstreatment–a cuckoo filter-
based tool for removing duplicate reads in ngs data.
Scientific reports, 9(1): 1-6.

Goodrich, M. T., R. Tamassia and M. H. Goldwasser, 2014. Data
structures and algorithms in java. John Wiley & Sons.

Kremer, F. S., A. J. A. McBride and L. d. S. Pinto, 2017.
Approaches for in silico finishing of microbial genome
sequences. Genetics molecular biology, 40: 553-576.

Levitin, A., 2012. Introduction to the design & analysis of
algorithms 3rd. Villanova university, 1(1): p18.

Urgese, G., E. Parisi, O. Scicolone, S. Di Cataldo and E. Ficarra,
2020. Bioseqzip: A collapser of ngs redundant reads for the
optimization of sequence analysis. Bioinformatics, 36(9):
2705-2711.

Xu, H., X. Luo, J. Qian, X. Pang, J. Song, G. Qian, J. Chen and S.
Chen, 2012. Fastuniq: A fast de novo duplicates removal
tool for paired short reads. PloS one, 7(12): e52249.

Except where otherwise noted, this item’s licence is described as © The Author(s) 2021. Open Access. This item is licensed under a
Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in

any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The images or other third party material in this it are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

