Potentiality of municipal sludge for biological gas production at Soba Station South of Khartoum (Sudan)

EL Mahdi Ahmed Haroun, Tisser khalid, Abdelazim Mohd Altawil, Gammaa A. M. Osman, Eiman Elrashid Diab

Abstract


Biogas production considered the most encouraging sources of renewable energy in Sudan. Anaerobic process of digestion is considered as efficient techniques of producing biogas. The process also a trustworthy method for treatment of municipal wastes, and the digested discharge could be utilized as soil conditioner to improve the productivity. This research work states at the option of using domestic sludge of the wastewater treatment plant in Soba municipal station (south of Khartoum-Sudan) to produce biological gas (biogas). A laboratory investigation was carried out using five-liter bioreactor to generate biogas for 30 days. The total volume of gas made was 270.25 Nml with a yield of 20 Nml of biogas/mg of COD removed. Chemical oxygen demand, Biological oxygen demand, & total solids drop produced were 89, 91 & 88.23% respectively. Microbial activity was declined from 1.8x107 (before starting the process of digestion) to 1.1x105 germs/mL (after completion of 30 days of digestion). This study offered a significant energetic opportunity by estimated the power production to 35 KWh.


Keywords


Sludge, municipal plant, organic material, anaerobic process, breakdown, biological gas potential

Full Text:

PDF

References


Álvarez, J., I. Ruiz, M. Gómez, J. Presas and M. Soto, 2006. Start-up alternatives and performance of an uasb pilot plant treating diluted municipal wastewater at low temperature. Bioresource technology, 97(14): 1640-1649.

Bodík, I., S. Sedláček, M. Kubaská and M. Hutňan, 2011. Biogas production in municipal wastewater treatment plants–current status in eu with a focus on the Slovak Republic. Chemical biochemical engineering quarterly, 25(3): 335-340.

Bolzonella, D., P. Pavan, P. Battistoni and F. Cecchi, 2005. Mesophilic anaerobic digestion of waste activated sludge: Influence of the solid retention time in the wastewater treatment process. Process biochemistry, 40(3-4): 1453-1460.

Bougrier, C., H. Carrere and J. Delgenes, 2005. Solubilisation of waste-activated sludge by ultrasonic treatment. Chemical engineering journal, 106(2): 163-169.

Chen, T.-H. and J.-L. Huang, 2006. Anaerobic treatment of poultry mortality in a temperature-phased leachbed–uasb system. Bioresource technology, 97(12): 1398-1410.

Connaughton, S., G. Collins and V. O’Flaherty, 2006. Psychrophilic and mesophilic anaerobic digestion of brewery effluent: A comparative study. Water research, 40(13): 2503-2510.

Davidsson, Å., C. Gruvberger, T. H. Christensen, T. L. Hansen and J. la Cour Jansen, 2007. Methane yield in source-sorted organic fraction of municipal solid waste. Waste management, 27(3): 406-414.

Deng, L.-W., P. Zheng and Z.-A. Chen, 2006. Anaerobic digestion and post-treatment of swine wastewater using ic–sbr process with bypass of raw wastewater. Process biochemistry, 41(4): 965-969.

Deshpande, D., P. Patil and S. Anekar, 2012. Biomethanation of dairy waste. Research journal of chemical sciences, 2(4): 35-39.

Fytili, D. and A. Zabaniotou, 2008. Utilization of sewage sludge in eu application of old and new methods—a review. Renewable sustainable energy reviews, 12(1): 116-140.

Hutnan, M., M. Drtil and A. Kalina, 2006. Anaerobic stabilisation of sludge produced during municipal wastewater treatment by electrocoagulation. Journal of hazardous materials, 131(1-3): 163-169.

Kalloum, S., H. Bouabdessalem, A. Touzi, A. Iddou and M. Ouali, 2011. Biogas production from the sludge of the municipal wastewater treatment plant of Adrar city (Southwest of Algeria). Biomass bioenergy, 35(7): 2554-2560.

Lefebvre, O., N. Vasudevan, M. Torrijos, K. Thanasekaran and R. Moletta, 2006. Anaerobic digestion of tannery soak liquor with an aerobic post-treatment. Water research, 40(7): 1492-1500.

Linke, B., 2006. Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing. Biomass bioenergy, 30(10): 892-896.

Moletta, M., 2005. Characterization of the airborne microbial diversity of biogas. In: PhD diss. Montpellier 2.

Monou, M., N. Kythreotou, D. Fatta and S. Smith, 2009. Rapid screening procedure to optimise the anaerobic codigestion of industrial biowastes and agricultural livestock wastes in cyprus. Waste management, 29(2): 712-720.

Nordberg, Å., Å. Jarvis, B. Stenberg, B. Mathisen and B. H. Svensson, 2007. Anaerobic digestion of alfalfa silage with recirculation of process liquid. Bioresource technology, 98(1): 104-111.

Parawira, W., M. Murto, R. Zvauya and B. Mattiasson, 2006. Comparative performance of a uasb reactor and an anaerobic packed-bed reactor when treating potato waste leachate. Renewable energy, 31(6): 893-903.

Perez, M., R. Rodriguez-Cano, L. Romero and D. Sales, 2006. Anaerobic thermophilic digestion of cutting oil wastewater: Effect of co-substrate. Biochemical engineering journal, 29(3): 250-257.

Poh, P. and M. Chong, 2009. Development of anaerobic digestion methods for palm oil mill effluent (pome) treatment. Bioresource technology, 100(1): 1-9.

Raposo, F., R. Borja, M. Martín, A. Martín, M. De la Rubia and B. Rincón, 2009. Influence of inoculum–substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: Process stability and kinetic evaluation. Chemical engineering journal, 149(1-3): 70-77.

Raposo, F., R. Borja, B. Rincon and A. Jimenez, 2008. Assessment of process control parameters in the biochemical methane potential of sunflower oil cake. Biomass bioenergy, 32(12): 1235-1244.

Tomei, M., C. Braguglia and G. Mininni, 2008. Anaerobic degradation kinetics of particulate organic matter in untreated and sonicated sewage sludge: Role of the inoculum. Bioresource technology, 99(14): 6119-6126.

Wang, J., D. Shen and Y. Xu, 2006. Effect of acidification percentage and volatile organic acids on the anaerobic biological process in simulated landfill bioreactors. Process biochemistry, 41(7): 1677-1681.

Except where otherwise noted, this item’s licence is described as © The Author(s) 2020. Open Access. This item is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this it are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

________________________________________________________

Abstract Views or PDF Downloads

best free website hit counter




DOI: https://doi.org/10.33865/wjb.005.02.0300

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 EL Mahdi Ahmed Haroun, Tisser khalid, Abdelazim Mohd Altawil, Gammaa A. M. Osman, Eiman Elrashid Diab

License URL: https://creativecommons.org/licenses/by/4.0/

Print ISSN: 2522-6746 : Online ISSN: 2522-6754
1. How to register 
2. How to reset password
2. How to prepare a manuscript before submission 
3. How to submit a paper 
4. How to check the review status of a paper
5. How to check the plagirisim or similarity report