Insilico analysis of peptides isolated from Agaricus bisporus manifests potential antimicrobial therapeutic activities

Aiman Fatima, Fatima Haider, Jaweria Malik Aftab Qaiser, Sami Ullah Jan, Syeda Marriam Bakhtiar

Abstract


More and more microorganisms are progressively acquiring resistances to conventional antibiotics. Consequently, new antibiotics which are more effective are needed. Antimicrobial peptides (AMPs) are recognized as effective alternative to conventional antibiotics. The AMPs are obtained from different organisms including animals, plants, fungi, algae, and microorganisms. One of such significant sources of AMPs is Agaricus bisporus (button mushroom) that is long-familiar for its medicinal values. However, the occurrence and potential of AMPs in A. bisporus have not been well characterized till date. This study was aimed to identify AMPs within A. bisporus proteome and to further evaluate its antimicrobial potentials through in silico analysis. The proteome of A. bisporus was explored for antimicrobial peptides and their physicochemical properties were evaluated using bioinformatics tools. The proteome of A. bisporus contains 63 AMPs with ample antimicrobial properties such as broad spectrum efficacy, stable, non-allergenic and non-haemolytic attributes. It was further identified that these AMPs putatively target pathogens via membrane disruption and inhibition of ATP-dependent enzymes. This study renders a basis for further evaluation of identified AMPs through in vitro experimentations and trials to elucidate their practical use as therapeutic antimicrobial drugs. Resultantly, positive AMPs could be subjected to commercialization as cheaper and effective alternatives to conventional antibiotics

Keywords


Antimicrobial, antibiotic resistance, button mushrooms, Agaricus bisporus, antimicrobial peptides, AMPs, drug resistance, multiple drug resistance, MDR

Full Text:

PDF

References


Abah, S. and G. Abah, 2010. Antimicrobial and antioxidant potentials of Agaricus bisporus. Advances in Biological Research, 4(5): 277-282.

Abraham, E. P. and E. Chain, 1940. An enzyme from bacteria able to destroy penicillin. Nature, 146(3713): 837-837.

Akhtar, M. S., M. B. Imran, M. A. Nadeem and A. Shahid, 2012. Antimicrobial peptides as infection imaging agents: Better than radiolabeled antibiotics. International Journal of Peptides, 2012: 965238.

Akyuz, M., A. N. Onganer, P. Erecevit and S. Kirbag, 2010. Antimicrobial activity of some edible mushrooms in the eastern and southeast anatolia region of turkey. Gazi University Journal of Science, 23(2): 125-130.

Atila, F., M. N. Owaid and M. A. Shariati, 2019. The nutritional and medical benefits of Agaricus bisporus: A review. Journal of Microbiology, Biotechnology and Food Sciences, 7(3): 281-286.

Bahar, A. A. and D. Ren, 2013. Antimicrobial peptides. Pharmaceuticals, 6(12): 1543-1575.

Balls, A., W. Hale and T. Harris, 1942. A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chemistry, 19(19): 279-288.

Brogden, K. A., 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3(3): 238-250.

Craik, D. J., D. P. Fairlie, S. Liras and D. Price, 2013. The future of peptide‐based drugs. Chemical Biology & Drug Design, 81(1): 136-147.

Dubos, R. J., 1939. Studies on a bactericidal agent extracted from a soil Bacillus: I. Preparation of the agent. Its activity in vitro. The Journal of Experimental Medicine, 70(1): 1-10.

Dubos, R. J., 1939. Studies on a bactericidal agent extracted from a soil Bacillus: II. Protective effect of the bactericidal agent against experimental Pneumococcus infections in mice. The Journal of Experimental Medicine, 70(1): 11.

Gause, G. F. and M. G. Brazhnikova, 1944. Gramicidin S and its use in the treatment of infected wounds. Nature, 154(3918): 703-703.

Ghosh, C., P. Sarkar, R. Issa and J. Haldar, 2019. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends in Microbiology, 27(4): 323-338.

Hancock, R. E., 2001. Cationic peptides: Effectors in innate immunity and novel antimicrobials. The Lancet Infectious Diseases, 1(3): 156-164.

Hancock, R. E. and A. Patrzykat, 2002. Clinical development of cationic antimicrobial peptides: From natural to novel antibiotics. Current Drug Targets-Infectious Disorders, 2(1): 79-83.

Hancock, R. E. and H.-G. Sahl, 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24(12): 1551-1557.

Huan, Y., Q. Kong, H. Mou and H. Yi, 2020. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11: 2559.

Huby, R. D., R. J. Dearman and I. Kimber, 2000. Why are some proteins allergens? Toxicological Sciences, 55(2): 235-246.

Kim, S. Y., F. Zhang, W. Gong, K. Chen, K. Xia, F. Liu, R. Gross, J. M. Wang, R. J. Linhardt and M. L. Cotten, 2018. Copper regulates the interactions of antimicrobial piscidin peptides from fish mast cells with formyl peptide receptors and heparin. Journal of Biological Chemistry, 293(40): 15381-15396.

Lee, J. H., M. Seo, H. J. Lee, M. Baek, I. W. Kim, S. Y. Kim, M. A. Kim, S. H. Kim and J. S. Hwang, 2019. Anti-inflammatory activity of antimicrobial peptide allomyrinasin derived from the dynastid beetle, Allomyrina dichotoma. Journal of Microbiology and Biotechnology, 2019; 29(5): 687-695.

Lei, J., L. Sun, S. Huang, C. Zhu, P. Li, J. He, V. Mackey, D. H. Coy and Q. He, 2019. The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research, 11(7): 3919-3931.

Li, B., P. Lyu, S. Xie, H. Qin, W. Pu, H. Xu, T. Chen, C. Shaw, L. Ge and H. F. Kwok, 2019. LFB: A novel antimicrobial brevinin-like peptide from the skin secretion of the fujian large headed frog, Limnonectes fujianensi. Biomolecules, 9(6): 242.

Mabrouk, D. M., 2022. Antimicrobial peptides: Features, applications and the potential use against covid-19. Molecular Biology Reports.

Mehta, B., S. Jain, G. Sharma, A. Doshi and H. Jain, 2011. Cultivation of button mushroom and its processing: An techno-economic feasibility. International Journal of Advanced Biotechnology and Research, 2(1): 201-207.

Melo, M. N., R. Ferre and M. A. Castanho, 2009. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nature Reviews Microbiology, 7(3): 245-250.

Moghaddam, M. M., K. A. Barjini, M. F. Ramandi and J. Amani, 2014. Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells. World Journal of Microbiology and Biotechnology, 30(5): 1533-1540.

Moyer, T. B., L. R. Heil, C. L. Kirkpatrick, D. Goldfarb, W. A. Lefever, N. C. Parsley, A. J. Wommack and L. M. Hicks, 2019. PepSAVI-MS reveals a proline-rich antimicrobial peptide in Amaranthus tricolor. Journal of Natural Products, 82(10): 2744-2753.

Ndungutse, V., R. Mereddy and Y. Sultanbawa, 2015. Bioactive properties of mushroom (Agaricus bisporus) stipe extracts. Journal of Food Processing and Preservation, 39(6): 2225-2233.

Ohtani, K., T. Okada, H. Yoshizumi and H. Kagamiyama, 1977. Complete primary structures of two subunits of purothionin A, a lethal protein for brewer's yeast from wheat flour. The Journal of Biochemistry, 82(3): 753-767.

Radek, K. and R. Gallo, 2007. Antimicrobial peptides: Natural effectors of the innate immune system. In: Seminars in immunopathology. Springer: pp: 27-43.

Reygaert, W. C., 2018. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3): 482-501.

Roversi, D., V. Luca, S. Aureli, Y. Park, M. L. Mangoni and L. Stella, 2014. How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23. ACS Chemical Biology, 9(9): 2003-2007.

Sarges, R. and B. Witkop, 1965. Gramicidin AV the structure of valine-and isoleucine-gramicidin A. Journal of the American Chemical Society, 87(9): 2011-2020.

Schauber, J. and R. L. Gallo, 2008. Antimicrobial peptides and the skin immune defense system. Journal of Allergy and Clinical Immunology, 122(2): 261-266.

Tehrani, M. H. H., E. Fakhrehoseini, M. K. Nejad, H. Mehregan and M. Hakemi-Vala, 2012. Search for proteins in the liquid extract of edible mushroom, Agaricus bisporus, and studying their antibacterial effects. Iranian Journal of Pharmaceutical Research, 11(1): 145-150.

van Hoek, M. L., M. D. Prickett, R. E. Settlage, L. Kang, P. Michalak, K. A. Vliet and B. M. Bishop, 2019. The komodo dragon (Varanus komodoensis) genome and identification of innate immunity genes and clusters. BMC Genomics, 20(1): 1-18.

Ventola, C. L., 2015. The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics, 40(4): 277-283.

Wang, X., Y. Sun, F. Wang, L. You, Y. Cao, R. Tang, J. Wen and X. Cui, 2020. A novel endogenous antimicrobial peptide CAMP 211-225 derived from casein in human milk. Food & Function, 11(3): 2291-2298.

Yazici, A., S. Ortucu, M. Taskin and L. Marinelli, 2018. Natural-based antibiofilm and antimicrobial peptides from micro-organisms. Current Topics in Medicinal Chemistry, 18(24): 2102-2107.

Zasloff, M., 2002. Antimicrobial peptides of multicellular organisms. Nature, 415(6870): 389-395.

Zhao, X., H. Wu, H. Lu, G. Li and Q. Huang, 2013. LAMP: A database linking antimicrobial peptides. PloS One, 8(6): 1-6.




DOI: https://doi.org/10.33865/wjb.008.01.0782

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Aiman Fatima, Fatima Haider, Jaweria Malik Aftab Qaiser, Sami Ullah Jan, Syeda Marriam Bakhtiar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Print ISSN: 2522-6746 : Online ISSN: 2522-6754
1. How to register 
2. How to reset password
2. How to prepare a manuscript before submission 
3. How to submit a paper 
4. How to check the review status of a paper
5. How to check the plagirisim or similarity report