Salinity stress resistance in wheat

Muniba Nazir

Abstract


Wheat is used as staple food worldwide and it ranked third in cereals. Its productivity a the global level decreases by many stresses mainly by salinity stress which is associated with different physiological and biochemical processes of plants. To overcome these growth and yield reduction issues, salinity resistance in wheat can be achieved. The introduction of resistance to salinity-induced water stress and ion toxicity in wheat lead to more reliable results. Salt tolerance mechanisms at tissues and whole plant levels along with sequestration of toxic ions can improve overall growth, yield, and salinity resistance capability in wheat. Different sources and measurements of salinity play important role in the production of salinity tolerant wheat. This article mainly reviews different physiological mechanisms, genetics, omics, and quality trait loci approaches for the production of salinity tolerant wheat.

Keywords


salinity resistance, salt tolerance, wheat, NaCl, osmotic stress

Full Text:

PDF

References


Byrt, C. S., B. Xu, M. Krishnan, D. J. Lightfoot, A. Athman, A. K. Jacobs, N. S. Watson‐Haigh, D. Plett, R. Munns and M. Tester, 2014. The Na+ transporter, Ta hkt 1; 5‐d, limits shoot na+ accumulation in bread wheat. The plant journal, 80(3): 516-526.

Daneshbakhsh, B., A. H. Khoshgoftarmanesh, H. Shariatmadari and I. Cakmak, 2013. Effect of zinc nutrition on salinity-induced oxidative damages in wheat genotypes differing in zinc deficiency tolerance. Acta physiologiae plantarum, 35(3): 881-889.

De Vries, F. T., R. I. Griffiths, M. Bailey, H. Craig, M. Girlanda, H. S. Gweon, S. Hallin, A. Kaisermann, A. M. Keith and M. Kretzschmar, 2018. Soil bacterial networks are less stable under drought than fungal networks. Nature communications, 9(1): 1-12.

Formentin, E., C. Sudiro, G. Perin, S. Riccadonna, E. Barizza, E. Baldoni, E. Lavezzo, P. Stevanato, G. A. Sacchi and P. Fontana, 2018. Transcriptome and cell physiological analyses in different rice cultivars provide new insights into adaptive and salinity stress responses. Frontiers in plant science, 9: 204.

Genc, Y., J. Taylor, G. Lyons, Y. Li, J. Cheong, M. Appelbee, K. Oldach and T. Sutton, 2019. Bread wheat with high salinity and sodicity tolerance. Frontiers in plant science, 10: 1280.

Goyal, E., S. K. Amit, R. S. Singh, A. K. Mahato, S. Chand and K. Kanika, 2016. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia local. Scientific reports, 6(1): 1-14.

Guo, R., Z. Yang, F. Li, C. Yan, X. Zhong, Q. Liu, X. Xia, H. Li and L. Zhao, 2015. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC plant biology, 15(1): 1-13.

Hemida, K. A., R. M. Ali, W. M. Ibrahim and M. A. Sayed, 2014. Ameliorative role of some antioxidant compounds on physiological parameters and antioxidants responses of wheat (Triticum aestivum L.) seedling under salinity stress. Life science journal, 11(7): 324-342.

Iqra, L., M. Rashid, Q. Ali, I. Latif and A. Malik, 2020. Evaluation of genetic variability for salt tolerance in wheat. Biological clinical sciences research journal, 2020(1): e016-e016.

Isfahani, F. M., A. Tahmourespour, M. Hoodaji, M. Ataabadi and A. Mohammadi, 2018. Characterizing the new bacterial isolates of high yielding exopolysaccharides under hypersaline conditions. Journal of cleaner production, 185: 922-928.

Karthik, L., G. Kumar, T. Keswani, A. Bhattacharyya, S. S. Chandar and K. Bhaskara Rao, 2014. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PloS one, 9(3): e90972.

Khan, M. S., A. Rizvi, S. Saif and A. Zaidi, 2017. Phosphate-solubilizing microorganisms in sustainable production of wheat: Current perspective. In: Probiotics in agroecosystem. Springer: pp: 51-81.

Liu, S., S. Liu, M. Wang, T. Wei, C. Meng, M. Wang and G. J. T. P. C. Xia, 2014. A wheat similar to rcd-one gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. 26(1): 164-180.

Masuda, K., 2016. Measuring eco-efficiency of wheat production in japan: A combined application of life cycle assessment and data envelopment analysis. ournal of cleaner production, 126: 373-381.

Miransari, M. and D. Smith, 2019. Sustainable wheat (Triticum aestivum l.) production in saline fields: A review. Critical reviews in biotechnology, 39(8): 999-1014.

Munns, R., D. A. Day, W. Fricke, M. Watt, B. Arsova, B. J. Barkla, J. Bose, C. S. Byrt, Z. H. Chen and K. J. Foster, 2020. Energy costs of salt tolerance in crop plants. New phytologist, 225(3): 1072-1090.

Nounjan, N., P. T. Nghia and P. Theerakulpisut, 2012. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of plant physiology, 169(6): 596-604.

Shah, Z. H., H. M. Rehman, T. Akhtar, I. Daur, M. A. Nawaz, M. Q. Ahmad, I. A. Rana, R. M. Atif, S. H. Yang and G. Chung, 2017. Redox and ionic homeostasis regulations against oxidative, salinity and drought stress in wheat (a systems biology approach). Frontiers in genetics, 8: 141.

Tiwari, B. K., A. Aquib and R. Anand, 2020. Analysis of physiological traits and expression of nhx and sos3 genes in bread wheat (Triticum aestivum L.) under salinity stress. Pharmaco phytochemistry, 9: 362-366.

Wang, M. and G. Xia, 2018. The landscape of molecular mechanisms for salt tolerance in wheat. The crop journal, 6(1): 42-47.

Xiong, H., H. Guo, Y. Xie, L. Zhao, J. Gu, S. Zhao, J. Li and L. Liu, 2017. Rnaseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Scientific reports, 7(1): 1-13.

Zarza, X., K. E. Atanasov, F. Marco, V. Arbona, P. Carrasco, J. Kopka, V. Fotopoulos, T. Munnik, A. Gómez‐Cadenas and A. F. Tiburcio, 2017. Polyamine oxidase 5 loss‐of‐function mutations in arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant, cell environment, 40(4): 527-542.

Zhang, Y., Z. Liu, A. A. Khan, Q. Lin, Y. Han, P. Mu, Y. Liu, H. Zhang, L. Li and X. Meng, 2016. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.). Scientific reports, 6(1): 1-10.

Zhao, Y., X. Ai, M. Wang, L. Xiao and G. Xia, 2016. A putative pyruvate transporter tabass2 positively regulates salinity tolerance in wheat via modulation of abi4 expression. BMC plant biology, 16(1): 1-12.

Zhao, Y., W. Dong, N. Zhang, X. Ai, M. Wang, Z. Huang, L. Xiao and G. Xia, 2014. A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant physiology, 164(2): 1068-1076.




DOI: https://doi.org/10.33865/wjb.006.02.0428

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Muniba Nazir

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Print ISSN: 2522-6746 : Online ISSN: 2522-6754
1. How to register 
2. How to reset password
2. How to prepare a manuscript before submission 
3. How to submit a paper 
4. How to check the review status of a paper
5. How to check the plagirisim or similarity report